神道の文献は、たとえ最古の古事記(712年)であっても、仏教伝来(遅くとも6世紀半ば)後に書かれたものであるので、そもそも「仏教に影響されていない神道」というものを記録している文献はない。すなわち仏教抜きで神道を考えるというというのはそもそも現代では無理。

「復古神道」は名前に反して江戸時代の新興宗教であって、儒教・仏教色を排すという意味ではかえってそれらの影響をうけている。

C++ はながいこと食わず嫌いだった。とにかく「難しい」というイメージだけ先行していた。

しかし、あくまで better C として使う限りでは難しくないし、可読性が上がるので、 C++ を使わない手はないという気持ちになった。

これまでの漠然とした C++ への不安

書いたコードと出てくるバイナリ

C を書いていると、だいたいは書いたコードがそのままバイナリに翻訳されている感があり、安心感がある。struct はメモリ上の配置そのままだし、関数だって単に処理のまとまりに名前がついてて、呼び出しもとに自動的に戻ってくるラベルなだけだ。

C++ になるとオブジェクト指向に概念が入ってきて、これが実際どのようにコンパイルされるかに不安が出てくる。クラスはメモリ上でどう表現されているのか、メソッドディスパッチはどのように行われているか?

もちろん知っている人にとっては簡単な話で

  • class は単に struct である
    • フィールド定義はそのままメモリ上の表現となる
    • メソッド定義は関数になる
    • 実際、C++ で class と書かれた定義を struct に置き換えても問題なくコンパイルされる (フィールドのスコープがデフォルトで class は private で struct が public である違いだけ)
  • メソッドディスパッチは基本的に静的である
    • レシーバによって動的にディスパッチされる関数は virtual 関数と呼ばれる
    • コンパイラがテーブルを作って動的に呼びだし関数を変えている

ということで、virtual を使わない限りでは、C++ の class は C で struct 定義と、その第一引数にその sturct ポインタをとる関数郡でしかなく、これは C でよくやるオブジェクト指向のプリミティブな実装とよく似ている。

このようなCのコードは

#include <stdio.h>

typedef struct {
	unsigned counter;
} my_counter;

void my_counter_init(my_counter* this) {
	this->counter = 0;
}

void my_counter_incr(my_counter* this) {
	this->counter++;
}

unsigned my_counter_get_count(my_counter* this) {
	return this->counter;
}

int main() {
	my_counter counter;
	my_counter_init(&counter);

	printf("%d\n", my_counter_get_count(&counter));
	my_counter_incr(&counter);

	printf("%d\n", my_counter_get_count(&counter));
}

このようなC++のコードとほとんど同じバイナリが出力される

#include <cstdio>

class my_counter {
	unsigned counter;
public:
	my_counter();
	void init();
	void incr();
	unsigned get_count();
};

my_counter::my_counter() {
	this->counter = 0;
}

void my_counter::incr() {
	this->counter++;
}

unsigned my_counter::get_count() {
	return this->counter;
}

int main() {
	my_counter counter;

	printf("%d\n", counter.get_count());
	counter.incr();

	printf("%d\n", counter.get_count());
}

テンプレート多用するとバイナリサイズ増えるんじゃないの?

テンプレートは、複数の型に対する処理を1回でまとめて書けるという仕組みなので、原理的には、扱う型が増えるほど、出力バイナリに関数本体が増えていくことになる。

しかし一方で、テンプレートをコンパイル時計算のために使うような場合は、コンパイル時に解決されるコードがほとんどになり、出力バイナリは書いたコードの見た目の多さに反してかなり少なくなることもある

ということで、テンプレートが使われているからといってバイナリサイズが肥大化するというわけではない。

最適化はどこまで信用できるか?

この書きかたで本当に最適化されたコードに出てくるの? という不安がある。これは難しくて、コンパイラが優秀でも、当然プログラマがちゃんと const を付けてコンパイラに意図を伝えないと、完全に最適化されたコードにはならない (インライン化されないとか)。

C にはない概念がある分、const の付けかたが複雑で、ベターCとして使おうと思うと一番ハマる。

一方で、テンプレートメタプログラミングでコンパイル時に計算することができるので、コンパイラが判断できないような高度な最適化を自力でやることができる。

測定中、10MHz 付近に急激な落ちこみが観測されることがあって気になっていました。そういうものなのかなとも思ったのですが、調べてみたら同じような問題にあたっている人がいて、まぁよく考えたらそういうものではないよなという感じです。

これは簡単に再現することができます。TGとSAを同軸で直結させて、TGを有効にし、10MHz 付近を拡大することで、変な落ちこみを見ることができます。

以下の画像がそうですが、明かに1dB 落ちこみがあるのがわかると思います。

あるいは、掲示板中にもありますが 10μH と 33pF ぐらいを直列に接続し、バンドパスフィルタを構成した上で 10MHz 付近を見ると、スカートが不自然になっているので非常に目立ちます。 冒頭の画像はこの方法での再現です。直結よりもわかりやすくおかしいことがわかります。

広いスパンで見ているときや、広いダイナミックレンジで見ているときには気付きにくいかもしれませんが、フィルタのようなものを測定するときはかなり気になる挙動だと思います。

10MHz 付近はアマチュア無線でも使う帯域ですし、基準信号付近ですから余計気になります。位相雑音がどうとかよりも致命的な問題でしょう。

現時点での解決方法

ファームウェアの 1.15 が1月22日にリリースされており、これにある程度の修正が含まれています。

最新のファームウェアは http://int.rigol.com/Support/SoftDownload/3 からダウンロードできます。

Product Series → Spectrum Analyzer → DSA815 Firmware_00.01.15.01.00 というのをダウンロードします。DSA815(DSP)update.rar というやつです。

DSA815update.sys を USB メモリのルートディレクトリにコピーして、DSA815 のフロントUSBポートに接続し、Storage の画面でこのファイルを選択したあと、Sys Update を選択すると、アップデートが開始されます。数分で終わり、再起動すると最新のファームウェアで起動します。

バッファロー USB3.0メモリ バリューモデル (8GB・ブラック)RUF3-WB8G-BK -

3.0 / 5.0

↑ 使ったUSBメモリです。自宅にUSBメモリがなく、SDカードリーダーとSDカードで代用しようと思いましたが、DSA815 では認識されませんでした。純粋な USB メモリじゃないとダメなようです。ググってみると、メーカー的にはできるだけ容量が少ないほうが信頼性が高いということになっているみたいです。とはいえ現時点で新品はもはら8GB未満は売ってません。これは USB 3.0 メモリですが、DSA815 は USB 3.0 に対応してないので、古くてもなんでもいいはずです (信頼性は別として)。

解決したか?


見ての通りです。直結の場合では不連続部分はわかりません。一方バンドパスフィルタで見たときはすこし不連続な部分が残っているようにみえます。

ということで、完全には解決しません。挙動的にはまるめ誤差みたいなのが発生しているような感じますが実装がどうなっているかはわかりません。

とはいえ、このように修正が入るので、現状の状態は Rigol のエンジニアは把握しており、直すつもりはあるようです。ファームウェアアップデートだけですめばいいんですが……

ファームウェアアップデートと保証

DSA815-TG には3年保証がついているのですが、ファームウェアアップデート時にどのような扱いになるか不安になりました。(そもそも国内販売版のものが国際版と完全に同一であるかの確証もない)

国内のリゴルジャパンへメールで確認をとったところ、すぐに返信していただけました。

  • 国内販売のものでもファームウェアは共通
  • ファームウェアアップグレードしても保証期間内では無償サポート

とのことで、アップグレードしても大丈夫そうです。

1.15 での他に気になった挙動

購入直後スクリーンショットをLAN経由でとれるようにしましたが 1.15 になって、TCPソケット経由でのコマンド解釈がすこし厳密になって動かなくなったので直しました。

あと、スクリーンショットをとるコマンドは最後にリモートモードを解除するコードを入れていたのですが、動かなくなりました。リモートからコマンドを実行すると必ずリモートモードになってしまって若干鬱陶しいのでなんとかしたいのですが、こちらの原因はよくわかってません。

どうやらスリープを挟まないとダメな模様

また、デフォルトで mDNS での DNS-SD の機能が無効になってみたいです。HTTP 経由でアクセスして設定しないと DNS-SD のクエリに応答しません。

備考

元のバージョンは00.01.12 でした。

アップグレード後は 00.01.15 です。


スペアナがあったらやってみたかったことの1つとしてコモンモードフィルタ(RFチョーク)の評価というのがあります。だいたいトロイダルコアを使って作っており、トロイダルコアは再現性が高いので計算通りにやれば実用性能はでるはずなのですが、ちゃんと作れているか?はやはりはかってみなければわかりません。

スペアナがなくてもハムバンドでダミーロードを使いつつ高周波電流を頑張って測るという方法で一応検証はできるのですが、面倒くさすぎるので結局グラフ化したりまでしたことはありません。面倒くささが勝りすぎます。

その点スペアナがあれば一瞬で…… という気持ちがありました (実際は適切な治具がないと正確に測るのはやはり難しいのですが……)

概要

大地経由での電流がコモンモード電流なので、フィルタのホットとコールドをショートして、TG のホットをフィルタを通してスペアナの入力にし、TG とスペアナのコールド側をショートさせれば計れそうです。要は単にRFチョークとして測定します。

なおコモンモードフィルタはだいたい-30dB ぐらいあれば十分な性能といえるらしいです。

測定方法

まずワニグチクリップをトラッキングジェネレータとスペアナ入力に直付けし、ホットコールドをそれぞれショートさせます。

この状態でTGの出力レベルを0dBmに設定し、ノーマライズします。(なおビビリなので外付けのアッテネータは入れてませんが内蔵アッテネータは10dB入れたままです) それなりに出力がないとノイズに測定結果が隠れてしまうので気をつけます。

ノーマライズされた状態でホット側をはずしてアイソレーションを確認します。-30dB 以上なければ測定の意味がないので、アイソレーションがとれてなさそうなら諦めてスパンを狭くして再度ノーマライズからやりなおします (意味がない結果が見えていると混乱するため)。

TG 側にワニグチクリップをつけたりして配線長を増やすと50MHz〜は容易にアイソレーションがとれなくなるので注意します。以下はオープンの状態のアイソレーションです。

この状態でフィルタに接続して測ります。フィルタの入力側(TG側)の線長が長いとこれまたアイソレーションがとれないので誤差の原因になりますが、排除するのが難しいです。シールドケースに入れて測るしかない気がしますが、今回は用意できてないので多少飛びこみがあります。

結果

今回計ったのはキットものの http://www.ddd-daishin.sakura.ne.jp/ddd/dcf/dcf-rf-29l3/kit-dcf-rf-29l3-ver2.htm これです。スペック的には 50MHz ぐらいまでは -30dB 余裕でとれるみたいなグラフがあります。

一応このように雑に測った感じでも 50MHz ぐらいまでは -30dB ぐらいになっているように見えます。(0〜100MHzのスパンなので真ん中が50MHzです)。とはいえ -40dB までとれている範囲はそれほどないです。

メモ:挿入インピーダンスとdB

入出力インピーダンス50Ωとして、例えばインピーダンスZを直列挿入した場合、入力側にかかる電圧は出力電圧を、挿入インピーダンス\( Z \) と入力インピーダンス\( V_{IN} \)で分圧した形になる。

なので、入力電圧は\( V_{IN} = V_{OUT} \frac{Z_{IN}}{(Z_{IN} + Z_{S})} \) になる。dB で表わすと \( 20\ log_{10}(\frac{Z_{IN}}{(Z_{IN} + Z_{S})}) \)

RIGOL (リゴル) 1.5GHzスペクトラム・アナライザ(トラッキング・ジェネレータ機能付) DSA815-TG -

4.0 / 5.0

やっぱスペアナは欲しいよなあと思いはじめて数ヶ月、決心がついたので買いました。技術力が低いので本当に金額に見合うぶんだけの活用ができるかは微妙ですが「見えないものが見えるようになる」というメリットに抗えませんでした。

スペアナといっても現状ではいくつも選択肢があります。USB 接続のものはハードのインターフェイスがいらない分をスペックにコストをかけられるので、スペック的には良さそうです。

DSA815-TG は位相雑音(ゆらぎ/時間ドメインでのジッタ)が多いというのが大きな欠点の一つのようです。高純度の信号の測定ができないことを意味しますが、この欠点がどれぐらい今後に影響してくるのかまだわかっていません。

しかしやはり欠点はあってもスタンドアロン型のもののほうが使い勝手は良さそうです。電源入れれば使えるというのは大事に感じます。USB 接続してアプリを立ちあげてという手順は地味にだるいのです。そういうところを考えると、スペックが良くても使う頻度が少なくなってしまうのは一番損になりますから、スタンドアロンのものにしました。

この機種は数年前までは15万前後で買えたみたいですが、円安進行のためか、かなり値上りしています。悔しいところですが諦めて18万ぐらいで買いました。当然トラッキングジェネレータ付きです。

所感

思ったよりも反応が良くて使いやすいです。

UIを日本語設定にすることができますが、この手の中華製品にありがちなひどい明朝フォントになったりはせず、普通に使えるレベルだと思います。とはいえ英語設定で使ってますが…

他に買ったものや欲しいもの

10dB アッテネータはマトモなやつを1つ買いました。追加でいくつか安いアッテネータを注文しています。

スペクトラム・アナライザによる高周波測定 (計測器BASIC) - 高橋 朋仁

高橋 朋仁

4.0 / 5.0

この本は買う前に読んでいました。アマゾンではなく、CQ出版社のサイトから PDF を買ってます

あとはリターンロスブリッジ (VSWR ブリッジ) が欲しいので作るかどうするか、という感じです。

方向性結合器は自分の欲しい周波数帯・耐電力のものは全く売っていないので作るしかありません。一度作っていますが、もっといいのを作りたいところです。

とはいえ50MHzまでならアンテナアナライザーもあるので、そこまで必要でもないかなという気がします。

LAN 経由でスクリーンショットをとる

まず測定画面のスクリーンショット(ハードコピー)ができないとかなり不便なので、ここから解決しました。

できたもの

プログレスを出しつつスクリーンショットをダウンロードしてこれます。ダウンロードしたあとは imagemagick の convertコマンドで png に変換し、optipng コマンドで最適化します。

ダウンロード部分にはライブラリ依存が一切ないので Ruby さえ動けば bmp ダウンロードはどこでも動きますし、LAN 経由なので一切ドライバなどが必要ないのが良いところです。

png 変換時には imagemagick コマンドと optipng コマンドが必要です。

測定器とのコミュニケーションプロトコル

DSA815 には USB 経由での GPIB 通信と、LAN ケーブル経由での VXI-11 (というよりは、LXIの一部)がサポートされています。

このへん、用語がいっぱいあるので整理しとくと

  • GPIB (IEEE488)
    • すごく古くからあるパソコンと計測器を繋ぐバス規格
    • 今は USB 経由に変換して繋ぐのが普通なようだ?
  • VXI-11
    • GPIB をイーサネット上で再現するような規格
  • LXI
    • LAN経由で計測器繋ぐというのをまとめた上位規格
    • Web インターフェイスとか、生TCPソケットとかの定義を含みつつ、VXI-11 も含む。
  • VISA
    • 計測器用プロトコルをひとまとめにした上位規格
    • VISA の裏側で GPIB とか VXI-11 とかが動いているイメージ

「というよりは、LXIの一部」と書きました。DSA815 はドキュメントには書いてないのですが、生のTCPソケット経由での通信もできるようになっていて、実はこれが一番簡単です。LXI の仕様では生TCPソケットの通信はポート5025を使うような記述がありますが、DSA815 では 5555 ポートです。

DSA815 でスクリーンショットコマンド

:PRIV:SNAP?

を送ると、11バイトのヘッダ(ファイル長を含む)とビットマップファイルが送られてきます。この :PRIV:SNAP? は隠しコマンドのようで、公式の Programming Reference にはありません。PRIV は Private の略なんでしょう。別のクライアントの通信からわかったので微妙なところです。

ref.

  • VIN 2〜24V
  • VOUT 2〜28V
  • 2A
  • 効率最大95%
  • スイッチング周波数1.2MHz

という表示のもの。

スイッチング周波数が高く、かなり小さい。(スイッチング周波数が高いほどコイルが小さくできるため。ただしスイッチング損が増えるので効率が犠牲になりやすい)。裏面に実装はなく、写っている部品で全て。

注意が必要で、普通と逆(左まわり)で電圧があがる。だから安いのか?

5V → 12V 昇圧での効率

2.5W → 2.2W 88%
5.0W → 4.73W → 94.6%
10W → 8.42W → 84.2%

これ以降出力低下

コイルが結構発熱する。

値段の割に効率が良く、小さいので結構汎用的に使えそう。2V〜 昇圧可能なのも嬉しい。NiMH 2本で昇圧したいときはベストといってもいいんじゃないかという気がする。

SX1308 とは

http://www.suosemi.com/ 深圳市硕芯科技有限公司という会社のもの

オン抵抗 80mΩ パワーMOSFETがビルトインされている。

パナソニック 口腔洗浄器 ジェットウォッシャー ドルツ 白 EW-DJ61-W -

3.0 / 5.0

フロスをどうしてもサボってしまうので、11月ぐらいに買ってみました。だいたい使用感はわかったかなと思うのと、歯科での指導を挟んだのでで感想を書いておきます。

フロスの代わりにはならない

フロスが面倒で買ったのですが、ジェットウォッシャーではフロスの代わりにはなりませんでした。結局歯間の狭いところ(自分はほぼ隣同士の歯がくっついています)の歯垢は落とせないみたいです。かなり念入りにジェットウォッシャーを使ってからでも、フロスを使うとまださらに歯垢がとれます。歯科でのチェックでも、フロス使用時は95%〜ぐらいの歯垢除去率だったのが、ジェットウォッシャーだけの場合80%〜ぐらいまで落ちていました。

歯科のでチェックは歯石(磨き残しが続いて歯垢が固まった状態=恒常的に磨けていない箇所)も見るんですが、サボりがちのフロスでもひどいことにはならないので、サボりがちであってもフロスのほうがマシみたいです。

まぁそりゃそうだろという感じではあります。これは歯間ブラシの代替であって、フロスの代替ではありません。歯間が狭い人には向いてないのでしょう。

食べカスを落とすのは気持ちがいい

食べカスはすごい勢いで落ちてくるので気持ちが良いです。まぁフロスでも落ちるんですが、フロスの場合、糸にヘバりついてくる感じなので使用感が悪いという気持ちの問題があります。

冷い水でやるとつらい

冬の冷い水をすぐに使ってジェットウォッシャーをするとかなりつらいです。知覚過敏の人には苦行になります。

あらかじめて汲んでおいて室温にするとか、お湯でやるとかする必要があります……

今後

とはいえ、やらないよりはマシだと思うので、フロスと併用することにします。結局手順が増えてるだけじゃないかという……

「独自拡張のような形でIEEE802.11のフレームを飛ばして」と書きましたが、実際のWiFiパケットは見ておらず、真偽に疑問があったので、キャプチャして確認しました。

結論からいうとその通りのようで、Management frame (ビーコンとかと一緒) を Vendor-specific な形式で使っているようです。Wireshark だと Malformed Packet となってしまうのが謎ですが…


Management frame

Action field

を Vendor-specific で使っている

ただ、Vendor Specific Content にあたる部分に、esp_now_send で渡したバイト列以外にもヘッダみたいなのがついています。これはよくわかりません。

OS X はビルトインで WiFI のパケットをスニフする機能が入っているので、とりあえずキャプチャして保存するだけならとても簡単にできます。

sudo /usr/libexec/airportd en0 sniff 1

これで WiFi のチャンネル1 (2.5GHz帯) のスニフができ、/tmp 以下に適当なファイルができて保存されます。

キャプチャはこれで良いのですが、別途解析ソフトウェアが必要です。

Wireshark

https://www.wireshark.org/

airportd sniff での結果は Wireshark で解析することができます。.cap ファイルを Wireshark の File → Open… から選択するだけです。

接続先が接続元の Mac アドレスでフィルタする場合、wlan.da == ff:ff:ff:ff:ff:ff や wlan.sa == ff:ff:ff:ff:ff:ff でできます。

該当するようなパケットが見つかっているなら、右クリックでフィルタとして適用とできるようになっています。

WPA2-PSK の解析

WiFi の経路は暗号化されているので、そのままだとIEEE802.11 フレームは読めますが、イーサネットフレームは読めません。しかしこれも Wireshark に適切に設定をすることで解析可能になります。

http://jorisvr.nl/wpapsk.html ここにSSIDとPassphrase を入れてでてくる16進数文字列をコピーしておきます。

Preferences… → Protocols → IEEE802.11 → Decryption Keys

type を wpa-psk として、Key にコピーした16進数文字列を入れます。

これで OK を押すと既存の解析結果も更新され、デコード可能ならデコードされます。

オムロン 【自動電源ON】【4秒測定】【体重50g単位表示】【PC/スマホ対応 Wi-Fi通信機能搭載】体重体組成計 カラダスキャン HBF-253W-BK -

5.0 / 5.0

なんとなく欲しいなとは思いつつ高いから買ってませんでしたが、妻が買ってきました。とりあえず結構いい感じです。

セットアップ時にスマートフォンのオーディオ出力とマイク入力を使ってやるようになってました。どういうタイミングで音を出してるのか調べなかったのですが、ヘルプだと「ピポパと聞こえたら…」という記述があるので、DTMF でやってるのかもしれません。このオーディオ出力とマイク入力を使う方法ですが、Zenfone2 ではうまくいった一方で、HTC J One ではうまくいきませんでした (beat audio などは切ってみたんですが…)

それはともかく、WiFi 経由ということですが、実際どのような通信が行われているのか知りたくなってきました。できれば接続先サーバをうまく騙して (ないし透過プロキシを通して) データをインターネットに出る前に自分で処理したいという気持ちもあります。

そんなわけでIEEE802.11フレームのパケットスニファを行って少しだけ追跡してみました。

接続先は vdu.wellnesslink.jp

WiFi パケットの解析をしてみたところ、ちゃんと TLS を使っているようでした。なので透過プロキシやら何やらを挟むことはできません。

体重データは人によってはセンシティブな個人情報ですから、TLS を使うのは当然でしょう。

一方、サーバサイドのサービスが終了してしまったとき、このデバイスの WiFi 機能は完全にゴミになります。自分の所有するデバイスの管理を自分でできないわけですからちょっと気持ち悪いところがあります。