ステッピングモーターの説明は JRC のドキュメントがわかりすい
http://semicon.njr.co.jp/jpn/PDF/application_notes/Stepper_Motor_Basics_APP_J.pdf
基本的にプルイントルク(負荷ありで脱調せずに始動・停止ができる範囲)がまず重要で、プルアウトトルク(加速して慣性がついた状態で脱調せずにパルスに応答できる範囲)は高速で動かしたいときにだけ考える。

モーターの特性グラフを見て、必要なトルクを得るときの最大周波数 (Hz または pps) を読む。それを1回転あたりのステップ数で割れば1秒間に何回転させられるかがわかる。

例えば、1回転あたり360ステップ(つまり1°/step) のモーターで、最大 720Hz までなら必要トルクが得られる場合だと、1秒に2回転が限界になる (120rpm)。

音声といえば 7MHz 帯はよく国内が出ていて混んでいるのだけれど、自宅のアンテナは帯域が狭く、SSB の周波数には出れないため、一度も出たことがなかった。移動運用時になんどか試み自体はしていたのだれど、混んでいてどうしても弱い電波だととってもらえないし、パイル気味でも一回の交信が結構長くなる傾向があるみたいで、結局交信できてなかった。

自宅で音声帯域に出れるのは 21MHz 帯と 18MHz 帯だけだけど、いずれも普段は殆ど国内が聞こえない。18MHz 帯は人工雑音と思われるノイズがひどいので余計聞こえない。

週末 CW WW TEST の SSB だったみたいで、21MHz をちょっと聞いてみたら、かなり多くの局が聞こえた。コンテストナンバーが簡単だし、せっかくなので強い局を呼んでみたらコールバックしてもらえた。KL (Alaska)、KH7 (Kure Is)、NH0 (Mariana Is)、AH0 (Mariana Is)、DS (South Korea) あたり。

コンテストだとたくさん聞こえて、かつ1回の交信が短かく、案外空振りしている人がいるので呼びやすい。

単一接点での手動キーイングがルールになっている Let's A1 コンテストというのがあって、聞いていたらめっちゃ面白かったので少し呼びで参加してみた。

コンテストといえばPCによる高速自動キーイングという感じだけど、ルール上使えないので、みんなどうしてもゆっくり気味のキーイングで、早くとも25wpm程度の、ちょっとのんびりしたコンテスト。

強力に入感する局が結構いて、呼べばほぼ一発でコールバックがあって楽しい。7MHz 帯で9局、3.5MHz 帯では1局交信した。

手動なのでかなり疲れるはずなんだけど、ずっと CQ 出している人とかがいて、だいぶすごい。

KX3 を持ち運ぶにしても、そのままカバンに入れるのはやはり抵抗があるので、ソフトケースを買っていた。いろいろ検索したところ、Think Tank Photo の Strobe Stuff という製品がピッタリということを知った。名前の通りカメラのストロボ用のソフトケース。amazon.com でもこの製品に対して KX3 で使ってます!みたいなコメントがついているぐらい。

amazon.com では配送対象にならなかったが、Joshin Web で販売していたので、こちらで購入した。

使い勝手

確かにほんとうにピッタリ入る。横幅はすこしだけ余裕があって、別途パドルを取り付ける用に少し金具をつけていてもちゃんと入る。

また、本体を入れる部分以外に、2m の給電ケーブルや、ちょっとしたコネクタを入れるちょっとしたスペースがあるので便利。

MLAはずっと試したいと思いつつ、帯域の狭さや自力での工作の難しさを考えるとなかなか手が出せなかった。

最近ファラデーシールドループの受信用アンテナを作ったところ、受信性能がよく面白いので、磁界検出型のループアンテナへの興味が高まり、タイミングよく販売していたため、いよいよ購入してしまった。

まだしっかり使いこめてないが、現時点でわかったことをメモする。

field_ant 製 MLA

field_antの村吉さんが出品している MLA-2A AM というのを購入した。メインループのパイプがいい感じに太く、見た目もかっこいい。

基本は28MHzとして売られているもので、ベランダに設置する場合サイズ的には直径77cmは結構ぎりぎり感がある。とはいえ台風のときはベッドの下に入れて保管できるサイズ。

コンデンサの付け変えて14MHz 18MHz 21MHz に出れるが、下のバンドになるほど放射抵抗が下がり、効率は著しく落ちると思われる。

field_ant 製の MLA の場合、コンデンサが特徴的で、ベースの容量確保用のコンデンサ(10D-2V同軸)と、それに並列に入る「トロンボーン型」と説明されているアルミパイプと同軸によるバリコン (アルミパイプ2本は直列コンデンサになっており分圧されて耐圧をあげつつ容量変化がマイルドになるようになっている) からなっている。

もし 0〜350pF ぐらいまで連続可変できて高耐圧なコンデンサが作れるなら、バンドチェンジで同軸を交換する必要がなくなりそうだが、そのようにすると、巨大かつ調整がシビアになるために、このような構造になっていると思われる。

設置方法

設置場所はマンション 1F のベランダ、給電点は地上高で1m程度しかない。

このへんを読むと、導体面に対し垂直にMLAを設置するのが良く、水平に設置すると損になるということが書いてある。

導体面というのは大地とかマンションの壁だとかだと思うが、1F ベランダだと大地も壁も近いので、どちらの影響が大きいかは微妙なところに思える。このような環境だと、どのように設置しても渦電流損がでて性能が十分に発揮されないかもしれない。

調整

14MHz帯・18MHz帯・21MHz帯とそれぞれ一度はあわせてみたが、どれも SWR は簡単にあわせられた。出ている局が多く信号が聞こえやすい21MHzでとりあえず使用感を得ようと、細かく調整。

アナライザーを使いながらしっかり追いこむ。SWR よりは RX を見て X (リアクタンス)が 0 ぴったりになるようにキャパシタを調整してから、R が 50になるように結合ループを調整した。ただ、輪っかだけだとどうしてもRが完全にピッタリいかないことがあって、壁からの距離を調整したらほぼピッタリにあうようになった。SWR=1.05 ぐらい。

とかをやりつつ、丁度コンテストだったので、アンテナマストを手で持ってふりまわしながら (ループ自体は軽いので振り回しやすい) いろいろ信号をきいてみたが、局によって垂直がよかったり水平がよかったりする。偏波が関係ありそうな近い局で調整しても、自分の用途ではあまり意味がないので、6エリアあたりの局を探したところ、水平のほうが信号が強かった。

モービルホイップのように、カウンターポイズのような再現性の低い調整をしなくて良いので、大変簡単に調整できる。ループ単体で完結していて周辺環境に影響され難いのは本当に楽。一方で、帯域が狭いので細かい調整が必要になるのはやはり面倒くさい。

受信

以下比較にでてくる「モービルホイップ」とは調整済みのマルチバンドモービルホイップのUHV-6のことです。

6エリアの局(免許状みると50Wのよう)は、モービルホイップでS2〜S5、MLA で S4〜S7 と平均的に S2 ほど上がった。ちなみにノイズはS1ほどMLAのほうが少なく、感度が高くなったからといって即ちノイズが増えるというわけではなかった。ただし、モービルホイップは少し同調点からずれた位置 (調整するのが面倒なので) なので、公平な比較ではない。

ベランダ内でのアンテナの設置場所もいろいろ試したが、場所によっては非常にノイズを広うこともあった。条件がよくわからないが指向性の方向にノイズ源がきてたのかもしれない。

調整した点から外れると急激に性能が落ちるらしく、なかなか厳しい。ちなみに短縮モービルホイップの帯域よりもさらに非常に狭い。

送信

しっかり共振点をあわせこんで 50W を入力してみたが、しばらく送信していると共振点が徐々に上にずれることがわかった。最初は風の振動でバリコンが抜けてくるのかと思ったが、どうやらコンデンサの特性が変化している?

耐圧の問題かと思ったので計算してみたが、このループは 77cm 22mm パイプなので 21MHz で 50W 入れると、おそらく 2.5kV ほどコンデンサに電圧がかかる。10D-2V は 3kV 程度までは試験されており大丈夫そうだし、バリコン部分も分圧されている分余裕はありそう。

そもそも急激にSWRが下がるというわけではなく、ゆるやかに共振点がずれていくので、絶縁破壊が起きている感じではない気がする。コンデンサが誘電体損で温度が上昇して比誘電率が微妙に変化している?のかもしれない。共振点が上がっていくということは、容量は減っている。ポリエチレンの誘電率の温度特性がよくわからないので確かな原因かわかってない。

あるいは、スパークしない程度の耐圧は足りているのだから、自動でSWRを調整するシステムをつくれれば、温度変化に対応して追従することで、ある程度これは解決できるかもしれない (もし原因が温度変化であり、一定以上の温度にならないのであれば)。

ちょいちょい試しているが、まだ十分交信できるほど時間がとれてない。21MHz で DXは既にできている。このときはモービルホイップよりもMLAのほうが強く聞こえた。送信はMLAでしかやっていないので比較できない。14〜28MHz は基本国内QSOが殆ど聞こえないので、なかなか試しにくい。

調整の遠隔化


やはり調整のたびにいちいちベランダに出るのは面倒なので、とりあえずモーターで駆動するように少し改造した。モーターユニットも販売しているみたいだけれど、モーター制御を自分でやってみたかったので試行錯誤した。

いずれ自動化したいなあという気持ちがあるので AVR でステッピングモータをまわす感じにしてみた。

使ったのはちょっと前に秋月で買ってあった300円ぐらいの小型ステッピングモーターで、それを適当に固定し、元々ついているM4ステンレス長ネジにカップリングで繋いである。

コンデンサと繋がっているアルミパイプは端が潰してあってネジが切ってあったので、長ネジを固定して回せば、そのまま調整に使える。ただ、ネジが浅くてすべることがあったので、万力で潰しなおして、自分で M4 のネジを切り直した。

使ったステッピングモーターのトルク的に 600pps ぐらい (1秒間に約1.6回転=100rpm) で動かすのが限界っぽく、あまり早くは動かせなかった。とはいえものすごく遅いというほどでもないのでとりあえずはあまりストレスなく使えてる。

ブーム側にモータを置くと伝達するシャフトがどうしても長くなってしまうので、ちょっと無駄だけどお手軽な改造で実現できた。まだ基板がブレッドボードのままなのでなんとかしたい。


雨対策にとりあえずタッパーを被せてある。モーターにだけ水がかからなければ、たぶん大丈夫かな。

まとめ

書いたこと以外にもいろいろやってみてる。14MHz 帯でもだいたいS2ぐらいモービルホイップよりも上がる感じだった。18MHz 帯はもともと常時外来の人工雑音がひどくどうしようもないので殆ど試してない。

まだ自分のところの環境で十分に使えるかはわかってないが、すくなくとも環境があまり良くなくても既設のモービルホイップ以上の性能はでていそうなことがわかったので、地道に交信を重ねたい。

エネループなニッケル水素電池10本で12Vを作っても、22Whにしかならない。また割と早く電圧降下して11V未満になってしまうので (そしてその状態でしばらく安定する) 少し電圧が足りない。

昨今大容量のリチウムイオンバッテリーはそこそこの価格なので、これを試してみようと思った。

ノートPC用モバイルバッテリー

スマフォ用のモバイルバッテリーは大変たくさん種類があるのだが、5V 2A 出力がいいとこなので、全く足りない。12Vに昇圧する場合効率80%だとしても0.67A程度しかとれず、使えない。

ノートPC用のモバイルバッテリーの場合、12V 16V 19V あたりをサポートしつつ 5V も出せるものが少し存在する。

謎の 77Wh モバイルバッテリー

モバイルバッテリー 大容量 21000mAh タブレットPC スマートフォン -

1.0 / 5.0

まずはアマゾンでレビューが良さそうなこれを買ってみた。結論からいうと液晶が不良品で返品したので殆ど使ってない。

ソフトケースまでついていて、届いたときは「おっ意外といいな」と思ったのだけど、液晶の表示がぶっこわれており、出力電圧がアテにならないので怖くて使えない感じだった。

一応電圧をテスターで見つつ試してみたけど、12V 設定時の出力電圧は 12.0V で 2A程度流して 11.4V だったので、中身は悪くないような気がする。

ちなみに説明書に製造元も販売元も書いてないのでお察しくださいという感じだった。

MobilePower 74Wh モバイルバッテリー

日本トラストテクノロジー MobilePowerシリーズ 20000mAh PB-20000 -

5.0 / 5.0

「日本トラストテクノロジー」または「電池企画販売」というメーカー・販売元で売られているもの。

このシリーズは容量違いがある。

88.8Wh (24000mAh 3.7V)

日本トラストテクノロジー MobilePowerシリーズ 24000mAh MP-24000 -

5.0 / 5.0

59.2Wh (16000mAh 3.7V)

日本トラストテクノロジー MobilePowerシリーズ 16000mAh MP-16000 -

5.0 / 5.0

ちょっと高めで、アマゾン以外のほうが安い。自分が買ったのは、なんか異様に安いやつだったけど、一回開封済み?みたいな感じだった。

説明書に販売元やサポート先の記載があり、どうも6ヶ月保証がついてる。あと「本製品は各社のライセンス製品ではありません」と書いてある。OEM 元?のようで、実は同じ仕様のモバイルバッテリーがサンワサプライブランドでも売っている。

59.2Wh

サンワサプライ USB充電ポート付きノートパソコン用モバイルバッテリー BTL-RDC6 -

3.0 / 5.0

まだ少ししか試せてないが、12V 設定のとき出力 12.3V、2A 出力時 11.7V ぐらいだった。定格では4Aまでとれると書いてあるので結構余裕そう。

DCプラグをOUTPUTコネクタに接続することで、12V出力が有効になる(ケーブル接続がスイッチになっている)。しばらく電流が流れないと自動でオフになるらしいけど、どのぐらいが閾値なのかわかってない。

ノイズ

この手のモバイルバッテリーはスイッチングレギュレータを使っているため必然的にノイズが発生する。とはいえ、少し試した限りではとても気になるというレベルのノイズはなかった。

ただ、1つ目のモバイルバッテリーは、アルミ外装に触れているときだけ非常にノイズレベルが上がるという現象があった。運用中は触らない工夫がいるかもしれない。2つ目のモバイルバッテリーは今のところそういう現象は観測できていない。

基本ケースがアルミでシールドされているから、電源ケーブルにだけコアを十分巻けばよさそうではある。そういう点に見ると、1つ目のバッテリーは完全にアルミ外装というわけではなく、一部合成皮っぽい部分があるので、もしかするとそれがスリットになって不要輻射が大きくなっていたのかもしれない。2つ目のバッテリーはほぼ全面アルミ外装で、電圧切替のスイッチ部分がスリットになっており、もしかすると周波数によっては影響があるかもしれない。

その他

上2つのバッテリーいずれも、付属している電源ケーブルのコネクタはちゃんと大電流対応の音叉型で挟みこむタイプになっていた。

バックライトなし・プリアンプあり・ IQ出力ありでの測定 電源電圧は約12V (ポータブルバッテリー前提での計測)

バンドごとに違い、基本的には高い周波数ほど増える。

受信時

  • 1.9MHz 0.183A
  • 3.5MHz 0.179A
  • 7MHz 0.181A
  • 10MHz 0.185A
  • 14MHz 0.188A
  • 18MHz 0.190A
  • 21MHz 0.192A
  • 24MHz 0.196A
  • 28MHz 0.198A
  • 50MHz 0.230A

送信時

  • 送信時の電圧が11Vを切ると出力が5Wに制限される
  • 電圧が13V以上の場合HF帯は12Wまで設定できる

SWR が悪化すると消費電力も増えるっぽいが、とりあえずダミーロードでの測定

10W

50MHz は 8W までしかでない (説明書通り)

  • 50MHz 2.39A (8W)
  • 28MHz 2.36A
  • 24MHz 2.72A
  • 21MHz 2.40A
  • 18MHz 2.30A
  • 14MHz 2.14A
  • 10MHz 2.10A
  • 7MHz 2.05A
  • 3.5MHz 2.31A
  • 1.9MHz 2.21A

なぜか 24MHz の効率が悪い。

5W

  • 50MHz 2.15A
  • 28MHz 1.41A
  • 24MHz 1.98A
  • 21MHz 1.22A
  • 18MHz 1.25A
  • 14MHz 1.17A
  • 10MHz 1.34A
  • 7MHz 1.72A
  • 3.5MHz 1.20A
  • 1.9MHz 1.39A

3W

3W が最も効率が良いらしいので計ってみた。1Wあたりの消費電力と考えると、別にそんなことなさそう。

  • 50MHz 1.73A
  • 28MHz 1.17A
  • 24MHz 1.20A
  • 21MHz 1.04A
  • 18MHz 1.06A
  • 14MHz 0.97A
  • 10MHz 0.95A
  • 7MHz 0.92A
  • 3.5MHz 0.99A
  • 1.9MHz 1.06A

COQSO というサービスをつくった。Confirming Our QSO という定型文のイニシャルをとってある。

QSL カードの現状

アマチュア無線と切って離せないものに QSL カードと呼ばれるものがあって、これは交信証明書という、お互い交信しましたよというのを、無線以外の信頼できる通信経路を使って確認するもの。

基本的に QSL カードは郵便によって交換されている。古代においては郵便が最も信頼できる通信経路だったのかもしれないが、現状ではそうではない。インターネットという非常に確実かつ低レイテンシな通信経路があるからだ。

郵便のメリットは物理的なものを直接送れることだが、一方で高コストであり、到達までに非常に時間がかかるというデメリットがある。殆どのケースで郵便のメリットはデメリットを上まわらない。特に、QSL カードは証明書という体だが偽造は容易であり、偽造のメリットも特にないので、物理的に交換する意義は薄い。

JARL (BURO)

郵送によるQSLカード交換だが、いちいち相手の住所を聞いたりするのが面倒だし、昨今のプライバシー事情にはあわない。基本的には BURO といって、中継してくれる組織を通じて、コールサインだけ書けば相手に届くようなシステムになっている。

日本では JARL (日本アマチュア無線連盟) が BURO となっており、会員同士ならば上記の通りコールサインだけで届く。会員以外へ送ると破棄される。

しかし JARL は何かと問題が多い組織かつ、前時代的なカード交換だけ (他には特に会員になるメリットがない) のために入会するには年会費も高く設定されている。

QSL を発行しないと怒る人の存在

世の中には面倒くさい人がいて、QSL カードを発行しないと怒る人というのがいるらしい。QSL カードは発行義務がないので無視したらいいのだが、面倒くさい人を避けるには適当にやる必要がある。

インターネット経由のQSL

eQSL.com というのがデファクトスタンダードのようで、しばしば使われているが、必ずしも流行ってはいない。以下のような理由があると思う

  • eQSL.com の UI がクソすぎる
  • いちいち ADIF をアップロードするのがだるい
  • QSL カードのデザインが非常に制限されている (なおかつダサイ)

UI はほんと、どうしようもなくて、みんな良く使ってるなレベル

eQSL はメールボックスのモデルが基本になっていて、全体的には物理の QSL 交換を閉鎖的なままネットに移植したものといえる。

COQSO

いろいろ書いたが、上記のようなことを踏まえて COQSO は以下のような意図で開発をした。

  • QSL は受信せず発行することだけを考える
    • 主にQSLカード集めはしていないという人向け
    • PDF でダウンロードして印刷できるようにして、必要なら印刷できるように
    • クロスチェックもしない
  • 交信履歴を公開するツールとして使える

個人レベルのサービスだと使えるリソースが非常に制限されているし、メンテコストが増えるのも嫌なので、問題になりそうな部分は以下のようにしてある

  • ログインまわりは Google の OAuth にまかせる
  • QSL カードの裏面(?)画像はPicasaにアップロードして参照する形にする

つまり Google アカウントを持っている前提で設計してある。

画像のストレージは自力で持つと相当のコストがかかるので外部サービスに頼るしかない。というところから逆算して Google ログインにしてある。前述の eQSL も画像のストレージのコストがかかるとかなんとかでカードのデザインが非常に制限されている。

TODO

ADIF ファイルの互換性がどれぐらいあるのかわかっていない。qso_date / time_on / band / mode / rst は最低限含めるべき、と仕様には書いてあるが、既存のロギングソフトがどれほど守っているかはわかってない。

いろいろロギングソフトを調べたほうがいいんだろうが面倒なので、必要になったらやりたい。

このサービスもADIFをつくってアップロードする必要があるのが面倒ポイントなので、各ログソフトで自動化できればいいが、結構ログソフトの数があるのでめんどうそう。