Dell ディスプレイ モニター P2415Q 23.8インチ/4K/IPS非光沢/6ms/HDMI,DPx2(MST)/sRGB99%/USBハブ/3年間保証 -

3.0 / 5.0

最近でた安い4Kディスプレイはサイズ違いで2つある。価格もすこし違うがだいたい一緒で、サイズだけが違う。

スペック

4K は 16:9 なので、横に長いタイプしかない。

P2415Q 23.8インチ

  • 185ppi
  • 527.04 mm x 296.46 mm

P2715Q 27インチ

  • 163ppi
  • 596.74 mm x 335.66 mm

検討

24インチでもA4 (210 x 297)見開き (=A3 420x297) 原寸表示は可能。ただし、A3ノビ (483x329) は原寸表示不可 (ノビ分はトンボ用なので、実質的には問題ないと思われる)

一般向け写真プリンタではA3ノビが限界なので24インチで十分な画面サイズといえる。

ppi 的には高いほうが正義なので、24インチのほうがいい。デスクトップ用だと 200ppi ぐらい欲しい気持がある。

一方、dot by dot で使った場合、ppi の高さは UI 文字の読みにくさに直結する。この点でいくと、単に広い画面が欲しいなら、27インチのほうがいいかもしれない。視力の良さにかかってる。

ref. [tech]ディスプレイのppiはどれぐらい必要か? | Thu, Feb 7. 2013 - 氾濫原, [tech] 4Kと2Kが同じにみえる、という人もいるらしい。 | Tue, Feb 3. 2015 - 氾濫原

結論

今のところ視力はそこまで悪くないし、A4見開きができるなら、24インチで十分と判断。

買ったあと

画面を見た感じでも24インチで良かった。それと 27インチと 24インチは、横に並べてもそれほど大きさに違いはない。ppi 優先で良さそう。

Mac での罠

自分の Mac は MacBook Pro 13inch Late 2013 なのだけれど、この機種は 4K で出せることは出せるのだが、30Hz までしか出せない。しかも出すためにちょっとコツがいる。以下の通り

  • ディスプレイのOSDで MST の設定を Secondary に設定する
  • システム環境設定の「ディスプレイ」から該当ディスプレイの解像度を
    • 1920×1080 に設定 (自動でRetina設定になる device pixel ratio が2)
    • 3840×2160 に設定 (「変更」のラジオボタンを選択した状態で、もう一度 Option を推しながら「変更」のラジオボタンをクリックすると選択可能になる。device pixel ratio が1)

これで 30Hz で2通りのフル解像度使うことができる。ちなみに 30Hz はマウスカーソルが結構カクついて見えたりする。動画とか見ないなら問題ないけど、動画見るなら不満がありそう。

3840×2160 にするとかなり広大だけど、他のモニタとのバランスが難しくなる。とはいえ、文字読めないレベルではないので、UI を小さくして情報量をあげたい場合、こちらのほうが良いと感じる。というか、Retina 設定のフルHDだと狭い。PDF 読んだりするときは、ウィンドウサイズを広げて拡大すれば Retina と同等になるので問題ない。アプリケーション側の拡大機能を活用したほうがいい気がする。

キャリブレーション

元からキャリブレーションされた状態で出荷されるっぽくて、キャリブレーションの結果表が同梱されてる。

とはいえ一応手元でキャリブレーションかけなおしてプロファイルを作った。色域は確かにほぼ sRGB 全域が出てるっぽかった。普通に綺麗なので問題ないかんじ。

トリプルディスプレイ

上記の通り、4K では 30Hz までしか出せないので、さらにディスプレイを繋いで表示できるか不安だったが、DELL U2713H (2560 x 1440 60Hz) 繋いで問題なく使えている。こちらは 4K と同時に使っていても普通に 60Hz でいけるので、転送速度の問題ではないと思うんだけど、4K のときだけなぜか制限がかかるっぽい。謎。

ppi まとめ

  • MacBook Retina 13.3in = 227ppi
  • MacBook Retina 15.4in = 220ppi
  • P2415Q 23.8インチ 185ppi
  • P2715Q 27インチ 163ppi
  • U2713H 27インチ 109ppi

エルゴトロン LX Desk Mount LCD Arm 45-241-026 -

5.0 / 5.0

【国内正規代理店品】X-rite エックスライト キャリブレーションツール ColorMunki Photo カラーモンキー・フォト KHG0100-PH -

5.0 / 5.0

最近ハイレゾ対応のオーディオインターフェイスを買っているので (基本的にSDR用だけど)、一応オーディオのハイレゾについて調べてみた。

人間の限界

聴覚のダイナミックレンジ(最小で聞きとれる音の大きさと、苦痛に感じるレベルの音の大きさの比)は120dB程度らしい。

聴覚で聞きとれる周波数の範囲は最大20kHz程度で歳をとると高い周波数から聞こえなくなっていく。

ハイレゾ音源

一般的な 16bit サンプリングだと 96dB ( 20*Math.log10(2**16) )、ハイレゾの24bitになると144dBになる。クラシックとかジャズでもなければ大抵むしろダイナミックレンジは圧縮されているので、実質はこれほどいらないだろう。

サンプリング周波数は最大周波数の2倍必要なので、一般的には 44.1kHz とか 48kHz が多い。ハイレゾだと 96kHz とか 192kHz とかになったりするが、出てくる周波数的には聞こえない領域を記録していることになる。細かく記録したほうが高い周波数での位相は保たれそうだけど、人間の耳は絶対的な位相位置を聞きとれない。

実際のところ、リスナーレベルでは適切な環境でそのまま再生するとハイレゾ音源は意味がない。(意味があると言いはる人もいるだろうけど)

ではどういう場合に意味があるか?

基本は編集作業時の音質劣化防止になると思った。例えば、写真ではカメラ上では12bit〜14bit程度のダイナミックレンジで記録をするが、これは現像時の加工性を上げるためで、最終的には 8bit に圧縮している。映画でも、記録時はできるだけダイナミックレンジを広くとれる領域で撮影し、編集時に色を圧縮したりすることある。

同じように、音声データも、後から編集を行う場合、できるだけ情報量が多いほうが編集の範囲が広がることはあるだろうと思う。

再生環境では

再生環境レベルで考えると、リスナーの再生環境において大きなエフェクトをかけたり、音量をデジタルで加減する場合、加工前のデータや加工後のデータが十分なデータを持てないと、綺麗にエフェクトがかからない可能性がある。例えばデジタルで音量を下げると、その分ダイナミックレンジは圧縮されてしまう (出力時に再サンプリングして高いビットレートで出力するのは意味がある)。

誰がうれしいか

  • マッシュアップ好きな人
  • SDR (ソフトウェア無線) ユーザ (安くて性能がいいデバイスがたくさんでてくる)

備考

よくハイレゾの説明で時間ドメインでの波形の汚なさを例にしたりするけど、人間は周波数ドメインで認識してる (周波数ごとにセンサーが分かれているという意味で) ので、あまり意味がなさそう。デジタルアンプとか、めっちゃ波形汚ないけど音は普通に聞こえたりする。

ASUS 7.1chドルビーサラウンド対応USBオーディオデバイス XONAR U7 -

5.0 / 5.0

こういう回路で、大抵の場合音量調整用のボリュームは入力についており、アンプ本体の増幅率は固定になっている。なんとなく「増幅率のほうを変えたほうが効率が良くないか?」と考えてしまう。

答え

アンプの増幅率を設定する抵抗 (入力抵抗と帰還抵抗) は繊細な部分なので、長く配線をひきまわしたりできない。余計なことをすると発振する。

また、使用時に増幅率を変えられるようにすると、ボルテージフォロワ状態で発振しないように位相余裕をとる必要があり、設計に制限が増える。つまり余計なことすると発振する。

リモートボリューム

しかし、前段で減衰させて入力を行うのは、S/N的には不利になる。なので、抵抗の位置はそのままにして、遠隔で抵抗値を可変できれば良いのではないか? と考えたりできる。

デジタルポテンショメータ (デジタル可変抵抗) はまさにそういう用途に使えそう。こういったゲイン可変のアンプは、プログラマブルゲインアンプという名前がついていたりする。一方、デジタル制御する場合、それ自体がノイズを出すので、S/N改善目的では難しい面もありそう (試してない)。

  1. トップ
  2. tech
  3. アンプの増幅率を変えず、前段で減衰させるのはなぜか?