LTC3780を使った同期整流式DC/DCコンバータモジュールが気になったので買ってみた。ヒートシンクの下に FET が4つ隠れている。

スペック的には

  • 入力は 5〜32V
  • 出力は 2〜24V
  • 出力電流は最大14A
  • スイッチング周波数は200kHz
  • 4.5V 以下で出力停止

昇圧も降圧もできるので、一旦出力電圧を設定すると入力電圧範囲なら何も考えずその電圧がでる。

例によって 5V -> 12V の変換効率を調べてみた。

  • 2.5W -> 2.24W 89.6%
  • 5W -> 4.73W 94.6%
  • 10W -> 9.68W 96.8%
  • 15W -> 14.5W 96.6%
  • 20W -> 19.1W 95.5%
  • 25W -> 23.9W 95.6%
  • 30W -> 28.2W 94.0%
  • 35W -> 32.3W 92.3%
  • 40W -> 36.6W 91.5%
  • 45W -> 40W 88.8%
  • 50W -> 43.8W 87.6%

XL6009, LTC1871 と比べると10ポイントぐらい効率がいい。効率がいいのでそこそこ通電しても基板が全然熱くならない。

ただし2000円ぐらいする。LTC3780 がそもそも高価なのでこんなものだろう。この構成で自力で基板を起こしたらもっとかなり高額になってしまう。コストパフォーマンス的には XL6009 や LTC1871 は相当良いと思う。とはいえ高効率は何にも替えられない価値なので難しいところ。


正直そんなに変わらないんじゃないかと疑って計ってみたけど思いのほか差が大きかった。

  1. トップ
  2. tech
  3. LTC3780 同期整流ステップアップ/ダウン DC/DCコンバータ

中華互換 Arduino Nano を ebay で買ってみた 700円ぐらい。

Arduino 互換という意味ではもっと安いのもあるが、安いものは USB シリアル変換モジュールが中華チップなのでドライバのインストールとか挙動に不安がある。FTDI チップ搭載だとこれぐらいが最安っぽい。FTDI チップは偽物もあるらしく、ドライバ側で弾かれたりするみたいだが、今回買ったのは大丈夫だった。

USB Serial を別途用意するならもっとアホみたいに安いのがある (水晶やら何やらついててもAVR 単独で買うのと同じぐらい)。



今回買ったのはちゃんとブートローダーが書きこみ済みのもので、シリアルポート経由で書きこみができる。ただ、手元に Arduino IDE がないため、avrdude を直で読んで書きこんでみる。

最初適当にこんな感じにしてみたが失敗した。

$ avrdude -pm328p -cstk500v1 -P /dev/tty.usbserial-AL011AVX
avrdude: stk500_recv(): programmer is not responding

ボーレートがあってないとこうなる可能性がある。-b オプションをかえてみる。

$ avrdude -pm328p -cstk500v1 -P /dev/tty.usbserial-AL011AVX -b b57600
avrdude: AVR device initialized and ready to accept instructions

Reading | ################################################## | 100% 0.05s

avrdude: Device signature = 0x1e950f

avrdude: safemode: Fuses OK

avrdude done.  Thank you.

とかなればOK (この例では書きこみまでやってない)


LED が4つ載っていて、TX RX PWR L となっている。最後の L ってなんだ?と思って回路図を見てみたが、単に PB5 に繋がっている LED らしい。デフォルトだとLチカが書きこまれているようでチカチカする。

 -

3.0 / 5.0

Arduino IDE でも Arduino Nano を指定して書きこむことができた。

最初なぜか Uno と勘違いして設定していて失敗しまくって、なんでだろう?ってなっていた。結局 Arduino.app/Contents/Java/hardware/arduino/avr/boards.txt を見て調べてる途中で気付いた。

  1. トップ
  2. tech
  3. FTDI チップの Arduino Nano コンパチボード 700円

Eagle で似たような回路及びボードレイアウトをコピーして配線する。

パネライズ(同じ基板を大きな基板に複数つくる) ではなく、似たような回路・ボードレイアウトを1つ作って、コピーを行なってからさらに配線を続けたい、という場合。

問題点

ボードレイアウトは、回路図を開いている状態だと、コンシステンシー維持のため、そのままではコピーができない。一方、回路図側側でコピーを行うと、部品の配置をイチからやりなおすハメになる。

解決方法

そのため、一旦回路図エディタを閉じ、回路図とのフィードバック維持を切る。

この状態だとボードレイアウトを全て選択してコピーして他の場所にペーストということができる。

これが終わったら、一旦ボードレイアウトを閉じて(閉じなくてもいいけど)、回路図エディタを開き、コピーした部分を選択して回路図側でもペーストする。

そしてボードレイアウトを再び開くが、普通はこの時点で「コンシステンシーが失われた」と怒られるので、ERC を行い、問題を特定する。

完全に回路図とボードで同じコピーを行なっていれば「different connections on pin and pad eagle」というエラーが支配的になるはず。

このエラーは、ボード側のコピー時に、本来共通であるはずの GND などの面がリネームされて GND1 などになることで発生する。なので、GND1 となっている部分を GND にリネームすれば良い。

簡単なものはこれで ERC をかけなおすとコンシステンシーが回復し、普通にフォワードバック編集可能に戻る。他にも「本来共通なのに別の名前になっている」というものは全てリネームする。

  1. トップ
  2. tech
  3. Eagle で似たような回路及びボードレイアウトをコピーして配線する。

ebay で売ってる「40M CW Transmitter Receiver 7.023-7.026MHz QRP Pixie KITS」というのを1つ買ってみた。送料無料600円ぐらい。おそらく世界最安のトランシーバーだろう。

RX

フィルタが一切ないので、ものすごく広い範囲がきこえてくる。高音が特にうるさいので、実用上は数次のオーディオフィルタが必要そう。

安定化電源で動かしてもハム音が盛大にでる。電池なら大丈夫なのかな?

水晶1つのダイレクトコンバージョンなのでイメージ混信があり、どっちのサイドバンドが聞こえているかは聞いているだけでは全くわからない。これはオーディオフィルタを入れても解決しないので、どうしようもない。(やるなら周波数変換前にフィルタするしかない)

ボード上の半固定抵抗はRITのようだ。RIT というか局発が変わるわけではないので、トーンの設定という趣なんだろう。

TX

水晶は 7.023MHz だが、7.026MHz ぐらいで出ていた。

12V で 50Ω負荷 6Vrms なので 720mW ぐらい。9V で4.2Vrms なので 353mW ぐらい。まさにQRPって感じ。

連続で送信してるとファイナルのトランジスタはかなり発熱する…… デューティー比高く送信するのには不安がある。

ファイナルは S8050D (SS8050 のコピー) っぽい。

なお、サイドトーンはない。実用するならエレキーも外部に必要だと思うので、そっちで鳴らしたら良いかな。

その他

使用ICはLM386の低周波増幅 (200倍、46dB) のみ。ミキサーICは使っておらず、ファイナルトランジスタが受信時のミキサを兼ねているっぽい。

まとめ

とりあえず面白いかと思って作ってみたが、免許うけるのも面倒なので、また思い出したらいじる。

まだいくつか ebay に出品されている QRP トランシーバーがあるので、試してみたい。ないしは簡単なものを自分で作ってみたくなる。

  1. トップ
  2. tech
  3. 中華 40M CW TRX 7.023-7.026MHz QRP Pixie

5V モバイルバッテリーの並列接続をしたい。

普通に生きていると、5V 2A の出力を複数(4つ)合成して、5V 8A をとりだし、12V に昇圧したくなることがあると思う。

DC/DC コンバータの並列接続

モバイルバッテリーの出力は DC/DC コンバータになっている (殆どは昇圧、たまに降圧のコンバータ) 。OCP (Over Current Protection 過電流保護)なども当然装備されているが、普通はスペックシートにはどういう挙動をするかは書いていない。ということで、基本的にスペックシートが保証していること(出力電圧、電流)だけに依存して、並列接続の回路をつくりたい。

DC/DC 電源を並列接続するには、電流制限回路とダイオードが必要になる。

電源間で逆電圧がかかったりしないように、まずダイオードが必要。これにより、電流が少ない場合は、電源の中で一番電圧が高い電源から全ての電流が供給される。

ダイオードだけだと、電流量を増やしたとき、モバイルバッテリー側のOCPにひっかかり、挙動が不安定になるため、電源制限回路で最大電流を2Aまでに制限し、2A以上とろうとしたら電圧降下させることで、他のバッテリーから電流が流れるようにする。

回路

ということで、電流制限しつつダイオードをつけたくていろいろ調べた結果、LTC4415 というICがあり、まさにこの用途に使えそうだと思った。LTC4415 は電流制限つき2回路理想ダイオード。

実装

LTC4415 は 16PIN MSOP + GND PAD となっており、手はんだするのが非常に難しかった。MSOPはともかく、グラウンドパッドはとてもつらい。

どうしようもないんだけど、一応以下のようにやると比較的再現性よくはんだがつけられた。

  • 基板側の GND パッドにちょうどいい量のはんだを盛る
  • IC を基板において位置をあわせ、1pin か 2pin ぐらいはんだ付けして仮り固定する
  • 基板を裏返し、慎重に抑えつけつつ、ICのすぐ裏にはんだごてをあてる
  • GNDパッドのはんだが溶けたらこてを離す (勘)

しかし、こんなことするよりホットプレートとシリンジクリームはんだで手動リフローしたほうが結果はいいと思う。

結果

思ったよりも大きい電流をとろうとしたときの電圧降下が大きく、6A ぐらいで 4.5V 付近まで下がってしまうことがわかった。こうなると後段にいれる 5V -> 12V の DC/DC コンバータの入力電圧を下回ってしまい、出力そのものがでなくなる。

電流制限による電圧降下による合成は、最も低い電圧の電源電圧によって最大電圧が制限されるため、1台でも弱い電源があって電圧降下すると、出力電圧に直接響いてくる(電流制限回路での電圧降下は全て損失になり発熱もする)。

これは電源そのものの弱さ (内部抵抗の高さ) だけではなく、コネクタの接触抵抗とか、ケーブルの善し悪し全てを含んで最悪の場合の電圧が出力されることになるので、たくさん合成するのは結構厳しい。印象としては近しい電圧の2つまでならこの方法でいけるかな程度。

結局、これでうまくいくなら簡単でいいなと思っていたが、12V 2A ぐらいまではギリギリとれる程度で、あんまり満足いく結果ではない。

ほかの方法も検討したい。

上記以外の検討事項だったもの

モバイルバッテリーは 50mA 以下の電流が続くと「充電終了」と判断して出力が落ちたりするため、基本的には常時 50mA 程度流す設計が必要になる。

この例のようにダイオードORの場合、電圧が低いバッテリーからは殆ど電流が流れてこないため、時間が経過するとパワーオフになって、必要なときに電流がとれなくなると思われる。

いろいろ解決方法はあると思うのでとりあえず無視していた。

  1. トップ
  2. tech
  3. モバイルバッテリーのロードバランサ

前に 500 Can't connect to lowreal.net:443 (certificate verify failed) というのを書いた。

こういうバッテリークリップを利用した電池ホルダーを作ったが、金具の安定度が悪く、端子間でショートしやすいのと、ちょうどいいケースがなくて金具そのものが露出しており、出力のケーブル間とでショートしやすく、かなり安全性が低かった。


ということで、DigiKey を利用するタイミングがあったので、試してみたかったKeystone Electronics のバッテリーホルダーを買ってみた。189という2個直列のタイプ

ケースは http://akizukidenshi.com/catalog/g/gP-00277/ がたまたま手元にあってピッタリだったので使った。


エネループが少し大きいからというのもあるだろうが、かなり入れるのがかたくて大変。金属製なので電池のシースが破れてくると使えないという問題もあるが、前よりはだいぶマシになったと思う。

メモ

エネループは 1900mAh しかない。直列10本で12Vということにして計算すると 22.8Wh。

KX3に接続し12Vで受信に 0.2A (2.4W)、送信出力5Wに2A(24W)、デューティー比1:1 (送信半分受信半分) の場合、1時間に14.2Wh消費する。最大で1.6時間ぐらい持つ計算。

Amazonベーシック 充電池 充電式ニッケル水素電池 単3形8個セット (最小容量2400mAh、約400回使用可能) - Amazonベーシック(Amazon Basics)

Amazonベーシック(Amazon Basics)

3.0 / 5.0

Amazon Basics のニッケル水素電池だと 2400mAh。同じように計算すると 28.8Wh、最大で2時間程度

  1. トップ
  2. tech
  3. Keystone Electronics 単3 10個のバッテリーホルダー

ebay で600円ぐらいで売っている LTC1871 の昇圧モジュールを買ってみた。いくつかバージョンがあるみたいだが、ボタンが2つついているタイプ。かなりちいさい。コイルはシールドされてない。

放熱器が両面テープでとめられていて(届いた時点ではそもそも両面テープでついてなかった)、ちょっと不安がある。

5V->12V 昇圧で

  • 2.5W -> 1.78W 71.2%
  • 5W -> 4.1W 82.0%
  • 10W -> 8.6W 86%
  • 15W -> 12.8W 85.3%
  • 20W -> 16.6W 83%
  • 25W -> 20.7W 83%
  • 30W -> 25.7W 86%
  • 35W -> 30.8W 88%
  • 40W -> 34.8W 87%
  • 45W -> 40.5W 90%

こんな感じだった。低電流のとき効率があまり良くない。

40W出力するとボードが結構熱くなる。ヒートシンクもそうだがコイルなども結構熱い。とはいえ全く触れられないレベルではない。

45Wを超えると急激に出力電圧が下がるので、5Vではこのへんが限界っぽい。入力電流は9Aが最大というスペックなので、スペック通り。

値段の割にはかなり良い気がする。

メモ

  • パターンを見る限り5ピンは未接続なのでバーストモードが有効
  1. トップ
  2. tech
  3. LTC1871 の昇圧(ブースト) DC/DC モジュール

そういえばだいぶ前に買ってあったのを忘れていた。

これ http://www.aitendo.com/product/10257 (ebay だと 200円ぐらい)

5V -> 12V 昇圧時

  • 2.5W -> 1.75W 87.5%
  • 5W -> 4.26W 85.2%
  • 10W -> 7.99W 79.9%

これ以上出力しようとすると電圧降下するので限界っぽい。IC 自体は最大 4A らしいがそこまでは全くいかない。aitendo の説明だと最大出力 3A と書いてあって謎だけどいずれにせよそこまでいかなかった。

  1. トップ
  2. tech
  3. XL6009 の昇圧モジュール

体重が65kg台まで落ちたが、体脂肪率は上がっており、完全に筋肉のみが急激に落ちたみたい。副作用による糖新生のせい? ただ寝てるだけで2kgも減るもんなのか

ライブラリ使ってるだけだとなかなか意識しないが、tStop bStop を適切に設定していないと、半田レジストがかかってしまって銅箔が露出しない。

(わかりにくいが、tStop、bStop が設定されている領域にはレジストされない。tStop レイヤーに rectangle を配置したりするとその範囲はレジストされない=銅箔が露出する)

例えば、自作ライブラリとしてパーツを作っているとき、一部パッドで放熱のために大きな領域がある場合、これはパッドそのもの(自動的に tStop がかかる)にするか、tStop としてその領域を指定する必要がある。

VIA については細かな罠がある。http://www.cadsoftusa.com/training-service/faq/#c94

要約すると、

  • VIA のストップマスクについてはデザインルールの Mask 設定によって決まる。
  • CHANGE STOP ON | OFF コマンドを実行することで VIA 個別にマスクの設定が可能
  • tStop/bStop でマスク範囲を指定しても、自動的に作成されるVIAのマスクは解除できない
  1. トップ
  2. tech
  3. Eagle の tStop bStop レイヤーについて

だいぶ前だけど、粗悪なmicro USBケーブルを掴んで (まともに充電できない) から、実際のところどれぐらいの抵抗があるのだろうか? と気になっていた。

いくつかの製品を調べたり計測したりしてみたので記録しておく。

比較結果

持ってないケーブルも入ってる。意外とケーブル持ってなかった。気が向いたら追試する。

2A時にケーブルだけで消費される電力も求めたが、ケーブルによって非常に大きな差があった。冒頭に書いた粗悪な micro USB ケーブルは 2A 流そうとすると 6W 近く消費するような抵抗値になっており、そりゃダメだわという感じ。

まともなケーブルならば1W未満になる。

まとめ

コネクタ同士の相性もありそうだなと思った。Anker は今回かなりカッチリハマってくれて、いかにも接触抵抗が低そうという印象(主観)をうけた。

Amazon で買えるのなら Anker がコスパ良さそう。

50cm なら秋月のケーブルが非常に安くて良さそうだった。

今回 Volutz プレミアムとかいうのが期待はずれだった。ケーブルというよりコネクタがあまり良くなさそう。ちょっと動かしたりすると抵抗値があがったりする。1本しか買ってないのではずれだったのかもしれないがもう買わないだろう。

Amazon Basics はケーブルに「USB 2.0 CABLE FOR OPTIMUM DATA TRANSFER」と印字されている通り、あくまでデータ通信用ということになっているっぽい。電源線も28AWGというのが残念すぎる。そしてその割に別にケーブルが柔らかいわけではないし、買う意味なさそう。

Anker® 【3本セット】 90cm Micro USB ケーブル ハイスピード USB 2.0 Aオス型-B同期 充電用ケーブル Android / Samsung / HTC / Motorola / Nokia 他対応 B7103012 - Anker

Anker

4.0 / 5.0

↑ これが手軽で良さそうだった。充電用と商品タイトルに書いてあるがデータ線も結線されている。

実測方法

micro USB B 側 http://akizukidenshi.com/catalog/g/gK-06656/
USB A 側 http://akizukidenshi.com/catalog/g/gK-07429/

micro USB 側の基板は最初ポリスイッチがついているが、抵抗値に現れるのが嫌なので、はずしてスズめっき線でジャンパしている。その上で、VBUS と GND をスズめっき線でジャンパし、往復経路で測定するように。

USB A 側の足にミノムシクリップで安定化電源との接続と、電圧計の接続をしてある。

その上で、安定化電源の定電流モードで1Aちょうどの電流を流し、電圧降下を測定し、抵抗を求めた。1A 流すと mV レンジを直読できる。

メモ

USBコネクタの接触抵抗は初期で30~50mΩ以下

秋月の micro USB で max 30mΩ http://akizukidenshi.com/catalog/g/gC-05254/
10000回の抜き差しを行って 10mΩ以下の劣化。

https://ja.wikipedia.org/wiki/%E7%B1%B3%E5%9B%BD%E3%83%AF%E3%82%A4%E3%83%A4%E3%82%B2%E3%83%BC%E3%82%B8%E8%A6%8F%E6%A0%BC

AWG28 212.9Ω/km
AWG24 84.22Ω/km
AWG22 52.96Ω/km
AWG21 42Ω/km
AWG20 33.31Ω/km

数字そのままで mΩ/m によみかえ可能

外見(シールド)が金メッキされていなくても、ピンは金メッキなことも多い。シールドが金メッキされていても気分以上の特に意味はないので、あまり気にしなくてもよさそう。金は別に銅に比べて導電率は高くないが、反応しにくいので初期性能が維持されるという特徴がある。

  1. トップ
  2. tech
  3. micro USB ケーブル王座決定戦