http://www.rigexpert.com/index?s=articles&f=aas

このページが面白いので、1つ1つ見ていきたいという気持ちがあります。まずは一番上の Analyzers based on diode detectors のうち、抵抗1本を検出に使うものです。

やってることは負荷インピーダンスを電流と負荷電圧から求め、さらに入力電圧との関係からリアクタンスの絶対値まで求めるものです。

計算

1 を 、2 を 、3 を という名前にします。

負荷 に対し、それぞれの電圧を としとき、負荷 にかかっている電圧 の絶対値(検波値) は

回路全体にかかる電圧

(1) の式を について解いて

(3) を (2) に代入する。

これを について解く

(3) の式のルートをとって を求めると

また、回路全体の電流

負荷 はそれぞれ

となり、抵抗成分とリアクタンス成分の絶対値が求まる (容量性か誘導性かはわからない)

  1. トップ
  2. tech
  3. アンテナアナライザの回路 シリーズ抵抗1本型

http://www.rigexpert.com/index?s=articles&f=aas

ブリッジタイプ (図の右側。2番)

これはリターンロスブリッジを使う形のものです。

  • 1を
  • 2を
  • 3を
  • 4を

とすると

から電圧反射係数が求められます。 で入力電圧を求め、 で得た電圧反射係数を正規化するイメージ)

から負荷インピーダンスの絶対値がわかります。

ブリッジのイメージをつかむ

一番問題なのはブリッジに接続されている がどのようになるかです。負荷側の電位は50Ωと負荷インピーダンスとの分圧、もう片方は50Ωと50Ωの分圧で固定になっています (すなわち入力電圧の0.5倍が基準点)。

ここでもし負荷インピーダンスが50Ωであれば、負荷側の分圧も入力電圧の0.5倍になり、ブリッジ部分の電位差はゼロになります。ブリッジの平衡状態です。

負荷インピーダンスが25Ωになると、25/(25+50)=0.333... で電位差が -0.1666...、100Ωになると 100/(100+50)=0.666... で電位差が 0.1666... になります。つまりここの電位差は基準インピーダンス50Ωに対しての比になります。

もし入力電圧が1Vだとしたら、この電位差の2倍がすなわち電圧反射係数になります。(反射係数には複素数の場合、角度が出てくるが、位相は計っていないのでこれはわからず、この反射係数は絶対値です)

ブリッジ電位差が反射係数になっていることを確かめる

ブリッジ中の負荷インピーダンスを とし、それ以外のインピーダンス値を とすると、入力電圧が1Vのときのブリッジの電位差 E は以下のようになります。ここで、 をブリッジの50Ω/50Ωで分圧された側の電位、 を負荷側の電位としています。

電圧反射係数は

なので、1Vのとき、ブリッジの電位差は反射係数の半分になっています。また、 は入力の半分の電圧になりますから、ブリッジ電位差 で正規化することで反射係数そのものを求められます。

反射係数の大きさと、負荷インピーダンスがわかると、負荷の成分がわかる

反射係数の大きさと、負荷インピーダンスがわかると、まず負荷の抵抗成分を求められます。

反射係数の大きさ 、伝送路インピーダンス 、負荷インピーダンス の関係は以下の通りです。

は 50Ω なので 50 で置き換え、Z は R + jX に置き換えます。

絶対値同士の比なので分子分母とも絶対値にします

負荷インピーダンスの絶対値が既知ですから

(2) を (1) に代入します

難しいので maxima で解かせて

R が求められれば 、Z との関係から X の絶対値も求められます。

あれ? VSWR って簡単な比で求められなかったけ?

VSWR は以下のような式で求められますが、これは負荷インピーダンスが純抵抗な場合 (jX = 0) だけで、純抵抗でなければ反射係数を一旦求める必要があります。

この式を前提にインピーダンス比がSWRになる(インピーダンスがSWRに直接関連づく)と覚えていると、SWRと負荷インピーダンスの値から R が求められる理屈がわからなくなります。

インピーダンス比からSWRを求めた場合、純抵抗を想定してSWR値を求めたわけですから、このSWRと負荷インピーダンスからRを逆算すると、必ず jX の項は0になります。

別の説明をすると、たとえ同じ絶対値の負荷インピーダンスでも、リアクタンス成分でSWRは上がります。Z = 50 であっても、50 + 0j の場合と 0 + 50j の場合では違うよということで、前者のSWRは1ですが後者は無限です。

  1. トップ
  2. tech
  3. アンテナアナライザの回路 ブリッジ型

リターンロスブリッジを買ってみたので、手元にあるいろんなものを測ってみました。

測定方法

普通のリターンロスブリッジなので、DUT をオープンしてノーマライズ、DUT に測定対象を接続してリターンロスを読みます。

ダミーロードたち

SMA コネクタの小電力ダミーロードたちです

ちょっとだけ長いやつ (耐電力 2Wのもの)

短いやつ 1W か 0.5W

もうひとつ短いやつ

ダミーロードが悪いのかリターンロスブリッジが悪いのかよくわかりませんが、そこそこまでしか測れなそうです。実用上はまぁまぁ使える感じでしょうか…

アマチュア無線用の M コネクタ定格15Wダミーロードです

第一電波工業 ダイヤモンド ダミーロード DL50A - ダイヤモンドアンテナ

ダイヤモンドアンテナ

4.0 / 5.0

DC-1GHz まで使える (1.15以下 (DC-800MHz) 1.20以下 (800-1000MHz) というスペックですが、1.15=23.13dB / 1.20=20.83dB なのでスペック通りの測定はできてない感じです。

ハンディ機用ホイップアンテナ

144MHz/430MHz 帯用のホイップアンテナです。1/4λなので人体アースしながら測っています。アースしないと全然違う帯域に同調していました。

モービル用マルチバンドホイップ

ベランダに設置してあるホイップです。最近調整してませんが… 2014年の10月あたりの記録はこれです 500 Can't connect to lowreal.net:443 (certificate verify failed)

なぜかちょっとずつズレているようにみえます。

ちなみに DSA815 には VSWR モードがあって、実はリターンロスからVSWR換算を自動でやってくれます。これを使って 21MHz 帯を見てみました。

7MHz も見てみました。

アンテナアナライザーでも測ってみました。

アンテナアナライザーとTG付きのスペクトラムアナライザー

リターンロスブリッジを使えばTG付きのスペクトラムアナライザーはスカラー型のネットワークアナライザと似た機能を持つようになります。しかし位相は測れないので決してベクター型ネットワークアナライザの代わりはできません。

アンテナアナライザーはベクター型ネットワークアナライザのアンテナ特化版です。(ベクター型ではないアンテナアナライザーもありますが…) なので R + jX を分けて表示することができ、

  • アンテナが共振しているのに抵抗成分のミスマッチでVSWRが高い (トランスをつかえば解決)
  • アンテナが共振していなくてVSWRが高い (アンテナ自体の調整が必要)

という原因をわけて解析することができます。


50MHz 帯まではアンテナアナライザーがあるのでスペアナでリターンロスを測る機会はまずなさそうです。しかしそれ以上高い周波数ではスペアナ+リターンロスブリッジが活躍できそうです。

  1. トップ
  2. tech
  3. スペアナとリターンロスブリッジを使ってSWRを測ってみる