2013年 10月 30日

ATTiny13A を使った小型エレキー

まとめを後日書きました http://lowreal.net/2013/11/08/5

前に書いたのの続き。

せっかくメインのICが小さいので、できるだけ小さく作るならどうするのがいいだろう?と考えてる。

まず、乾電池1本で動いたらいいなと思ったので、1.4Vを3.3Vに昇圧する回路を組んで駆動させてみたら、昇圧回路がどうもうまくいかなくて、やたら電気食う感じだった。昇圧回路の調整を別途やれば乾電池1本でもいい感じになるかもしれないけど、実際ブレッドボードで組んでみたら結構体積も食う感じになってしまったので、そもそもこの方法を諦めた。

じゃあリチウムコイン電池を使うことを考えよう、と思った。リチウムコイン電池なら1個で3V出せる。ただ、あまり電流を流すことができなくて、標準で 0.2mA 程度に抑える必要がある。消費電力を減らす工夫はしてるつもりだけど、スピード調節をADCにしたのでボリュームに常に電流が流れるとか (10kΩなのでこれだけで0.3mA流れる)、もうちょっと頑張る必要がありそうだった。

まず、ADC は1秒ごとに行うようにコードを変えて、そもそも頻度を減らした。また、ボリュームに電圧をかけるのも、ADCが行われるときだけにした。これはピン1個を出力にして、VCC の代わりにそこに繋いでる。VCC とピンの出力電圧は厳密には違うので、ADCの精度は落ちるけど、そもそも安定してない電池駆動だし、相対値だけがとれればいいのでまぁいいかな、という気がする。

それでだいたいアイドル時に0.3mA程度まで下がった。しかしこれ以上思いつかないので、とりあえずクロックを下げてみて挙動に問題がないか試すことにした。ATTiny13A の場合、内蔵クロックは 9.6MHz, 4.8MHz, 128kHz とそれらを8分周したものが選べる。なので 4.8MHz を8分周した600kHzで動かしてみると、思ったより変なことにならなかった。これでアイドル中はほぼ0.2mA未満に。

じゃあ 128kHz だとどうだろう、ということでやってみたら、

 bad AVRISPmkII connection status: Unknown status 0x00

とかでるように…… たぶんクロックを下げすぎたせいで ISP の書きこみのクロックを読めてないのかな……

うーん困ったと思っていたら avrdude に転送スピードを下げるオプション (-B) があったので、-B 100 ぐらいにしてやったらいけた。しかし書きこみ速度がだいぶ遅い。

コードを全体的に書きなおさないと 128kHz でバグってて動かない感じだけど、軽く試した感じだと、アイドル中で0.09mAぐらい。キーイング中で0.19mA。パワーダウンは変わらず0.6uA程度。コーディングが面倒になった割にはそんなに減らない。ベースの消費が無視できないほどクロックの支配率が低くなってるせいかな。

仕様から

  • VCC=3V, f=128kHz
    • idle: 0.01mA
    • active: 0.04mA
    • power down: 0.00015mA
    • ADC: 0.225mA
    • Timer0: 0.002mA
    • pull-up: 0.08mA
  • キーイング中は pull-up + active + timer0 + FET GS接地抵抗(440k)電流 = 0.122mA が最低でも必ずかかる
  • アイドル中は idle + timer0 = 0.012mA
  • ADC中は active + ADC + timer0 = ボリューム電流 = 0.567mA
  • パワーダウン中はクロックに関係なく固定で 0.15uA
    • 比較すると実測値が結構高いけどなんでだろう
  • 瞬間最大電流
  • キー同時押し pull-up * 2 + active + timer0 + FET GS接地抵抗(440k)電流 + ADC
    • 0.7338mA

パワーダウン中の消費は AVR ISP Mark II と繋っていたからで、RESET をはずせば 0uA になった

  • パワーダウンモード 0.0uA未満
  • アイドル中 90uA -> 0.09mA
  • キーイング中 198uA -> 0.198mA with FET
2013年 10月 28日

マイコンプログラミングとか、黙って Arduino やっとけハゲという感じではあるんだけど、Arduino の言語がどうも好きになれなくて使ってない。CっぽいけどCじゃない、でもC、みたいなのがなんとなく嫌だなと感じてる。それは置いておいても Arduino は素晴しいと思います。

Arduino も AVR を使っているし、結局 Arduino 頑張ろうとすると AVR のスペックを理解する必要があるので、じゃあ AVR でいいか、という感じになる (安いし)。

Arduino は、開発環境も含めたエコシステムが魅力で、そこがすごくいいと思うけど、自分みたいに CUI で vim で書いて Makefile でコンパイルして書きこんで gdb でデバッグするみたいのが好きな人間だと、少し魅力が薄れてしまうように思う。

IDE はあればあるで便利で良いんだけど、Makefile と gdb を使ってやっていれば、マイコンプログラミング以外のときにもその知識が生かせて嬉しいと思う (IDEの操作の知識はほかに生かせない)

2013年 10月 27日

AVR 浮動小数点 (float) 演算

浮動小数点演算を使ったとき、-lm を付けないとバイナリサイズが巨大化する問題がある。-lm をつけない場合、デフォルトの (libgccの?) 浮動小数点関数がリンクされるけど、avr 用には高効率なものが libm に実装されている。libgcc だと 3k -> libm だと 1k ぐらいのインパクトがあるので必ず libm を使うようにしたい。

とはいえ、ちゃんと理解してないと libm にリンクされない……

結論からいうと以下じゃないとだめだった。

$(COMPILE) -o main.elf $(OBJECTS) -lm

以下のようだとうまくいかない。

$(COMPILE) -lm -o main.elf $(OBJECTS)
$(COMPILE) -o main.elf -lm $(OBJECTS)

というのも、リンカは、引数を順番に読みこんで、読み込み中のファイルに今までで未定義のシンボルがあったとき、それを解決する、という挙動をするらしい (なんとなく逆に、先に定義して解決していくもんだと思ってた)。

なので、先に -lm を指定しても、その時点では未定義のシンボルが何もないので何の意味もない。

gcc のオプションに -v (verbose) を渡すと、最終的に ld (collect2) に渡される引数がわかる。

うまくいく場合は main.o -lm -lgcc -lc -lgcc というふうになってる。main.o で使ってるシンボルが -lm で解決されて、あとまだ足りないのは -lgcc とかで解決される。-lgcc が2回出てくるのは、-lc が -lgcc を使ってるからかな。よくわかんない。

AVR、なぜかリセットされまくるとき

割込みかけるように設定しているにも関わらず、それに対する処理を書いていないと、sei() を呼んだあと、割込みが発生するときに落ちてリセットがかかる。

sei() が呼ばれるまでは問題ないので、コメントアウトでデバッグしていると超ハマる。

AVR シリアルでPCと接続してデバッグ

USB-シリアルポートアダプタ (RS-232C) は前に買っていたけど、RS-232C は正負 -12~+12 で1/0を表現うるので、マイコンのロジックレベル(0 or VCC)とは違っていて、そのままではマイコンと接続できない。

調べてみると、RS232トランシーバー (ドライバ) ICというのがあって、それを使えば簡単にレベル変換できることがわかった。有名なのは MAX232 というやつみたいだけど、ほぼ同じインターフェイス(ピンアサイン)でビットレートや電源電圧が違うやつがいろいろとあるみたいだ。

今回は ICL3232CPZ という 3.3V〜5V で動いて、なおかつ外付け部品が 0.1uF 5個だけというのを選んで作った。

繋いで以下のような、ボーレート 19200 で吐き出すコードを書いてみた (チップは ATTiny2313、レジスタ名がチップによって違うので、チップ変えるとそのままでは動かない)

#include <avr/io.h>
#include <string.h>
#include <util/delay.h>

#define clear_bit(v, bit) v &= ~(1 << bit)
#define set_bit(v, bit)   v |=  (1 << bit)

static inline void uart_putchar(char c) {
	loop_until_bit_is_set(UCSRA, UDRE);
	UDR = c;
}

static inline void uart_puts(char* string) {
	unsigned int len = strlen(string);
	unsigned int i;

	for (i = 0; i < len; i++) {
		uart_putchar(string[i]);
	}

	uart_putchar('\r');
	uart_putchar('\n');
}

void usart_init(unsigned short baudrate) {
	unsigned int d = ((F_CPU + (baudrate * 8L)) / (baudrate * 16L) - 1);
	UBRRL = d;
	UBRRH = d >> 8;

	UCSRB =
		(1<<RXCIE) | // RX Complete Interrupt Enable
		(1<<TXCIE) | // TX Complete Interrupt Enable
		(0<<UDRIE) | // USART Data Register Empty Interrupt Enable
		(1<<RXEN)  | // Receiver Enable
		(1<<TXEN)  | // Transmitter Enable
		(0<<UCSZ2) | // Character Size
		(0<<RXB8)  | // Receive Data Bit 8
		(0<<TXB8)  ; // Transmit Data Bit 8

	UCSRC =
		(0<<UMSEL)            | // USART Mode Select: 0=Asynchronous Operation, 1=Synchronous Operation
		(0<<UPM1)|(0<<UPM0)   | // Parity Mode
		(0<<USBS)             | // Stop Bit Select
		(1<<UCSZ1)|(1<<UCSZ0) | // Character Size (with UCSRB)
		(0<<UCPOL)            ; // Clock Polarity
}


static inline void setup_io () {
	usart_init(19200);
}

int main(void) {
	setup_io();


	for (;;) {
		uart_puts("Hello, World");
		_delay_ms(1000);
	}
}

PC 側では、この USB シリアルポートアダプタの場合、/dev/tty.usbserial-FTB3L9UG というようなファイルができるので、これを指定して GNU screen の window を1つ作ってる。変なことしてないのでボーレートを指定するだけでいける。

screen /dev/tty.usbserial-FTB3L9UG 19200

これで RX/TX があるチップならかなりデバッグが捗りそう。

2013年 10月 21日

AVR で USB 接続の PC キーヤーを作る

PC からモールス符号を発生させて無線機に入力するものが欲しいと思っていた。当然既にそういうのはあるんだけど、どうも気に入るのがないので、必要な機能だけ自分で実装する。

基本の要件としては

  • クロスプラットフォームであること
    • というか Mac で動くこと
  • USB バスパワーで動くこと

なので、簡単そうでいろいろ教材としても楽そう。

クロスプラットフォームで面倒なドライバを書かなくてすむ方法は HID デバイスとして作ることだと思うので、そのように作ることにした。また、USB 用の外部チップとか用意したくないので V-USB (AVR マイコン上で USB を処理できるライブラリ) を使うことにした。

いろいろやってなんとか2日ぐらいで最低限の機能の実装ができたのでいろいろメモしておく。

回路図とコード

コード: https://github.com/cho45/AVR-USB-CW


現状制作途中のものなので、実際使う際に必要なリレー部分とかは書いてない。

現状だとダイオード2本で約1.4V程度電圧降下させて 3.3V〜3.6V 程度を作りだす方法を使ってる。V-USB の Wikiに書いてある方法の1つ。

左下のはそのうち試してみたい回路で、AVR自体には5Vをそのまま供給して、信号ラインだけ 3.6V にツェナーダイオードで電圧降下させる。電源電圧を3.3V程度にしてしまうと、動作周波数が 12MHz 程度までしか保証されないので、16MHz や 20MHz で動かすならこちらのほうが安定しそう。

V-USB

まず examples/hid-{data,mouse} を動かして、ふむふむと思いながらやってみたけど、なかなかハマった…… HID デバイスを作ろうとするとデフォルトの usbconfig.h から結構書きかえないといけないんだけど、それを知っていないとだめなのでつらかった。

usbconfig-prototype.h から作るのではなく、example/hid-* のをコピってくるほうが確実に動くと思う。

まだコントロール転送しかできてない。少なくともインタラプト転送はやることになりそうだけどデバッグがだいぶ大変 (追記:インタラプト転送は Mac + libusb だとできなかった)。

あと、自分で設定している割込みの頻度が高すぎると STALL しやすい…… クロック周波数にしても、こういった処理にしても結構シビアなので気を使わざるを得ない……

HID のレポートデスクリプタ定義は、大本の仕様書がどこにあるのかわからないのでコピペと感で書いて試した。

V-USB を妨げない delay_ms

_delay_ms は定数しかスリープできないのと、ビジーループなのでその間割込み以外何も走らなくなってしまう。V-USB は usbPoll() を少なくとも50msecに一回は呼ばないといけないとかなので、これは使えない。

なので、まず割込みで時間を測るタイマー変数を作る。

必要な精度以上のタイマー(あまり短くないほうがいい)を用意 (この例だと1ms) して、グローバルな timer という変数をインクリメントするようにする。(F_CPU / 分周設定 / OCR0A) CTC のほうが自由に時間を設定できて楽

	/**
	 * timer interrupt
	 * CTC 16MHz / 64 / 250 = 1kHz = 1msec
	 */
	TCCR0A = 0b00000010;
	TCCR0B = 0b00000011;
	OCR0A  = 250;
	TIMSK0 = 0b00000010;
unsigned long timer;
ISR(TIMER0_OVF_vect) {
	timer += 100;
}

以下のようなマクロを用意して DURATION(msec) で、引数に与えた時間が timer 換算でいくつになるかを出す。浮動小数点演算を使った瞬間、出てくるバイナリサイズが長大になるのでそうならないようにしてる。

#define DURATION(msec) (unsigned int)(msec * 100)


delay_ms を実装する。_delay_ms におけるビジーループ部分が任意に書けるので、ここで usbPoll() をする。

void delay_ms(unsigned int t) {
	unsigned long end;
        cli();
	timer = 0;
        end = timer + DURATION(t);
        sei();
	while (timer <= end) {
		wdt_reset();
		usbPoll();
	}
}

これでナイーブに delay_ms() を使ったコードでも可読性と効率をそこそこ両立できそう。しかし、なんかもっといい感じにコード書けそう。。普通どうやるものなのかよくわからない。

I2C 液晶

デバッグするとき、何かしら文字を表示できるインターフェイスがないとつらいため導入。シリアルポートに出力してデバッグするのがたぶん一番楽なんだと思うけど、レベル変換が必要で手元にあるものではできなかった。


I2C を使うにあたって、原理を理解していないのと、なおかつそれを AVR で実現する方法がわからないのと、さらには「デファクトスタンダード」な通信プロトコルも存じあげないため、全ての箇所でハマりにハマった。チップは ATmega168P なのでそこまで細かい原理を知っていて実装できる必要はないけど、だいぶハマった。

やり終わってみれば、別に難しくはないんだけど、どこに問題の原因があるのかが、見える現象が少なすぎて大変だった。面倒でもいちいちLEDチカチカさせて動作確認をすべき。

以下に I2C 液晶 (アドレス 0x7c) を操作するコード。何をするにせよ、とにかくデータシートをよく読んで理解するのが大変に重要だと実感した。

#include <string.h>

#define START 0x08   
#define ReSTART 0x10   
#define MT_SLA_ACK 0x18   
#define MT_DATA_ACK 0x28   
   
#define MR_SLA_ACK 0x40   
#define MR_DATA_ACK 0x50   
#define MR_DATA_NACK 0x58   
   
#define SLA_W 0xA0   
#define SLA_R 0xA1   
#define ADDRESS 0x00   
#define DATA 0x55   

void Error () {
//	unsigned i = 0;
//	for (i = 0; i < 3; i++) {
//		set_bit(PINB, 0);
//		_delay_ms(500);
//		clear_bit(PINB, 0);
//		_delay_ms(500);
//	}
//	clear_bit(PINB, 0);
}

void i2c_start () {
	// start
	TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);
	while (!(TWCR & (1<<TWINT)));
	if ((TWSR & 0xF8) != START) return Error();   
}

void i2c_stop () {
	TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWSTO);
}

unsigned char i2c_write (unsigned char data) {
	TWDR = data;
	TWCR = (1<<TWINT) | (1<<TWEN);
	while (!(TWCR & (1<<TWINT)));

	switch (TWSR & 0xF8) {
		case MT_SLA_ACK:
		case MR_SLA_ACK:
		case MT_DATA_ACK:
			return 1;
		default:
			Error();
			return 0;
	}
}

void display_write_instruction (unsigned char address, unsigned char data) {
	i2c_start();
	i2c_write(address);
	i2c_write(0b10000000);
	i2c_write(data);
	i2c_stop();
	_delay_ms(1);
}

void display_write_data (char* string) {
	unsigned int i = 0;
	unsigned int len = strlen(string);

	display_write_instruction(0x7c, 0b00000001);

	i2c_start();
	i2c_write(0x7c);
	i2c_write(0b01000000); // Co=0 RS=1

	for (i = 0; i < len && i < 8; i++) {
		i2c_write(string[i]);
	}
	i2c_stop();

	_delay_ms(1);

	i2c_start();
	i2c_write(0x7c);
	i2c_write(0b10000000); // Co=1 RS=0
	i2c_write(0b11000000); // set ddram address to line 2
	i2c_write(0b01000000); // Co=0 RS=1
	for (; i < len && i < 16; i++) {
		i2c_write(string[i]);
	}
	i2c_stop();
}

void display_init () {
	TWBR = 0x24;
	TWSR = 0b00000001;
	TWCR = 1<<TWEN;

	display_write_instruction(0x7c, 0b00111000); // function set to 0 (default)
	display_write_instruction(0x7c, 0b00111001); // function set to 1 (extended)
	display_write_instruction(0x7c, 0b00010100); // internal osc frequency
	display_write_instruction(0x7c, 0b01110000); // contrast set
	display_write_instruction(0x7c, 0b01010110); // power/icon/contrast control
	display_write_instruction(0x7c, 0b01101100); // follower control
	_delay_ms(300);
	display_write_instruction(0x7c, 0b00111000); // function seto to 0
	display_write_instruction(0x7c, 0b00001101); // display on/off control
	display_write_instruction(0x7c, 0b00000001); // clear all

	_delay_ms(10);
}

ハマり

ハードウェアが絡むコーディングは、一度ハマると

  • 配線ミス
  • コーディングのミス

のどちらで発生しているかの見極めができないとかなりつらい…… 配線ミスはあってはならないので、最初の段階でよくよく確認しておかないとあとあとつらい。どんなに確認しても確認したりないぐらい確認する必要がある。あと配線後は必ずテスターをあてたほうがいい……

USB コネクタのピンの半田付けを適当にしすぎたせいで、試している最中に1本がはずれて通信できなくなるということがあった。こういうアホみたいなことでもコーディングミスを疑ったりすると時間を食ってしまう。

PORTB, PINB

出力を操作したいときは PORTB なのに、PINB と書いていてしばらく気付かなかった。この場合、微妙に出力されたりされなかったり、みたいな不安定な挙動になって、全く動かないわけでもないのでなかなかコーディングミスであることに気付けない。

Mac 環境で Ruby + libusb を使って HID デバイスを操作する

最初は feature レポートだけでごにょごにょしていたのでよかったけど、インタラプト転送をしようとしたところで、claim_interface が ERROR_ACCESS エラーを出して止まることがわかった。ググった感じだと、HID デバイスの場合、そのへんの処理を OS のドライバが握っているため、ユーザレベルだと直接扱えないらしい。

とりあえずどうしようもないっぽいので、feature レポートだけで情報をやりとりするように変えた。現状のプログラムだとそれでも問題がないっぽい。

AVR は思ったより難しくなくて結構拍子抜けするぐらいだけど、今までやったことがない分野なので適度に難しい問題がたくさんころがっていてめちゃくちゃ楽しい。久しぶりに深夜3時ぐらいまでひたすらコーディングするとかしてしまった。

USB デバイスとか「作れない」という状態だとほんと全然アイデアが沸いてこないんだけど、やってみると結構「ああ、あれもできそう」「あれができたら楽しそう」みたいなのがでてきていい。

ウェブアプリのように誰かにすぐ使ってもらえるものを作るという感じではないのがもったいない感じだけど、なんか別に、自分そういうのなくてもいいなって感じなので良いです。

僕みたいな普段ウェブアプリみたいなかなりレイヤーが上のほうのことやってる人間でも、最近だとアセンブリとか全く書かなくてもよくていい。

ちょっと考えてみた感じ、何も持っていない状態からの AVR におけるとりあえずの開発に必要なのは以下あたりかなあと思った。

  • プログラムの一般的な知識 (ウェブとか関係なく普通の)
  • AVR ライター (純正 AVR ISP Mark II も別に高くないので純正のを買うのがよさそう)
  • ブレッドボード・ブレッドボード用のジャンパピン集
  • ピンヘッダ・オス・メス
  • ミノムシクリップコネクタ
  • レインボーフラットケーブル (裂いて使えるし、複数の線が纏められるし超便利)
  • マイコンチップ (ATTiny2312=150円ぐらい, ATmega168P=200円ぐらい)
  • 抵抗E12系一通り10本ずつぐらい
  • コンデンサE6系一通り10本ずつぐらい (デジタルだと100uF以下ぐらいでよさそう)
  • LED数個 (デバッグその他に必ず必要)
  • 電源
    • 安定化電源、なければ電池ケース (エネループなら4本直列=4.8V程度のもの)
    • あるいはUSBから5Vとってもいいかもしれないけど、ポリスイッチ(何度も使えるヒューズ)を入れたほうがいい
  • テスター (必須)

そんなに必要なものない気がしたけど、何もなしからだと結構ある。1万ぐらいあればぎりぎり集められるかな。

2013年 10月 19日

AVR エレキー、リグの接続を判定して内蔵ブザーを切り替え

ダイオードだけ入れて対処したのがどうもひっかかっていて、やはりまずい気がするので、やめた。リグ側から電圧がかかっていないとき、こちら側から電圧がかかってしまうのが気持ちわるい。

リグ側からかかっている電圧を使ってFETをスイッチし、接続されているときだけ、特定のプルアップしているピンをグラウンドに落とすような感じにした。スイッチを使わず、実際に接続されているかどうかを見れるようになったので、ジャックは挿しこまれているけど、リグの電源がついていない場合なんかには機能的にも前より便利になった。

素直にこうしとけばよかった。これでそんなにまずいことはない、と思う……

懸念していた点が解消されたので、ブレッドボートをやめてユニバーサル基板に実装した。

今まで、回路図からユニバーサル基板に落とすときはいきあたりばったりでやっていたけど、今回はプリント基板作成ツールを使って事前に実装を考えてみた。

いろいろ、プリント基板を作れるソフトウェアはあるんだけど、どれも微妙に使いづらくて難しい。自分だけの最高の部品ライブラリを作ってからじゃないと基板作成ができないとか、そういうアレがある……

今回はいくつか試した結果、Fritzing という OSS の、プリント基板ビューを使ってやってみた。ビューがいくつかあって楽しいソフトウェアなんだけど、やはりこれも回路図やブレッドボートビューを使う場合、ライブラリを作るあげるのが面倒くさい。ただ、配線を試行錯誤やる程度なら、別の部品を代用して使っても問題ない。

しかし配線を試行錯誤するのも結構つらくて、選択したくないものが選択されてしまうことがものすごく多い。そのためのロック機能がある、と思いきや、ロックをかけても選択できてしまうので意味がない。結果、一切あたり判定が存在しなくて動かすことができない部品とかが存在する (一度かぶっているのをとれば移動できるけど)。かなり辛い。

2013年 10月 17日

AVR 消費電力を減らす

割込みタイマーによるカウンタを使った delay_ms に実装しなおしたら 1MHz で動かしても符号が著しく遅くなることがなくなった。

この状態で消費電流を測る

  • アイドル状態 0.38mA
  • パワーダウン状態 62uA
  • キーイング中 0.55mA

delay 中も sleep するようにしたのでキーイング中の消費がだいぶ減ってる。

常時キーイングしてても144日ぐらい持つ。普通ありえないので、1日あたり2時間キーイングとすると、771日でだいたい2年持つ計算 (実際は自然放電されるからもっと短いけど、十分長い)

さらに減らすにはどうしたらいいだろう。チップスペック的にはパワーダウンモードだと0.1uA未満しか流れないみたいだけど、現状の回路だと多少流れてる。プルアップしてるのがわるい?

スリープ前にピン設定を変える

リグとの接続を見る端子がプルアップしているのをスリープ時にオフにすればいいことがわかった。これで

  • アイドル状態 0.38mA
  • パワーダウン状態 10.8uA
  • キーイング中 0.55mA

これで1日2時間キーイングで1440日に…

アイドル中、キーイング中の消費電力はこれよりもっと減らせるだろうか……

ISP Programmer の罠

AVR ISP Mark II を繋いでいると、パワーダウンモードでも10uAほど流れるようだ…… なんとはずしただけで 0uA (測定限界未満) になってしまった。これで同条件で 1693日持つ計算になった。上のプルアップを一時的にやめるというのもやる必要がなかった。

2013年 10月 16日

AVR でエレキーをつくってる

まず何を作ろうという感じだけど、エレキーならはじめて作るマイコンの教材としては、LEDチカチカレベルで簡単だし、なおかつ実用性があるので、ちょうどいい。自分で作れれば何かしら挙動を変えたいときも技術力の許す限りは自由にできるのでやってみてる。

検索するといろいろ作っている人がいるけど、結構難しい感じまで作りこまれたのが多くてつらい。しかし この作例 はプログラムも外付け部品もかなりシンプルだったのでとても参考にした。特にプログラム部分は、割込みを使って非常に少ないコードで基本機能が完全に実装されていて、実装の気が楽になった。

設計の指針

  • いわゆるエレキーの基本機能
    • 長短点メモリー
    • インヒビット
    • スクイズキー
  • スピードコントロールできること
  • 1.2V電池2本で長いこと動くこと
  • サイドトーンを発音できて、単体でも練習用として使えること

最初の実装

最初の実装は全部で80行ほど。スピードコントロールなどもなくて、動作だけ動くかやってみた感じ。この時点ではブザーを鳴らす部分とかもないので、LED をチカチカさせていた

ブザーを鳴らす

一番お手軽なのは電圧かけるだけで鳴るやつを使うことだろうけど、手元にあるのは普通に圧電スピーカーだし、鳴る周波数変えれたら嬉しいので PWM を使って出力することにした。

16bit タイマーでやったんだけど、動作を理解するまでがまず意味不明で大変だったのと、動作を理解しても、比較値やトップ値に対応する実際の変数名がわからなくてひたすら仕様を読んだりした。しかしまだちゃんと理解しているという感じになってない…… 一応鳴るようにはなったし、ピポッって鳴らしたりもできるのでとりあえず良い。

出力

出力はリグと繋ぐ部分。事前に計ったところ、リグのキーイング端子は 5V がかかっていて、スイッチオンのときは 1mA 未満しか流れない。なのでほんと適当にスイッチすればよさそう。

  • トランジスタスイッチング
    • 安い・簡単・消費電力多め
  • FETスイッチング
    • 消費電力少なめ・少々高い・回路電圧からして使えるFETを探すのがめんどう
  • フォトカプラ
    • まだ試してない
トランジスタスイッチ

最初に試した。手元の 2SC1815Y のベースに5.6kΩ程度つけてエミッタ接地でスイッチングさせた。動作としては問題なくうまくいく。

FETスイッチ

エンハンスメント型でゲート電圧2.4V付近で十分電流が流せればなんでもいいはずだけど (ほんとうかな)、定番のスイッチ用 FET というのがよくわからない 、とにかく売ってるやつで適していそうなやつを探した…… CPAN からモジュール探すより難しい。

データシートを見た感じ、2SK2232 のほうが低い電圧でもかなりの電流 (3Aぐらい) が流せるようになるみたいだけど、だいぶ高い。2N7000 は 2.4V 程度だと数十mAしか流せない。

今回の用途だと、まずDS間に大量に電流が流れることがないので 2N7000 で駆動してもよさそうだけど、よくわからない。試した感じではうまくいった。

スピードコントロール

とりあえず手元にある ATTiny2313 には ADC がないので、お手軽にボリューム使ってスピードコントロールするみたいのはできない。コンデンサの充電時間を利用してADCぽいことをするというのをやってる人もいるけど、だいぶ面倒そうだし、そこまでするなら普通に ADC 内蔵のチップを買ったほうがいいな、という気分。ATmega168 というのも手元にあるけど、今回の用途ではオーバースペックすぎて使う気が起きない。

しかし、よくよく考えてもみると、そこまで執拗にボリュームというインターフェイスを使いたいわけではなくて、むしろデジタル的に 15wpm 〜 30wpm 程度を 1wpm 単位で切り替えられたほうが、相手に「QRQ25wpm」とか言われたときに対応しやすいのではないか? と思ったので、プッシュスイッチ × 2 を up/down スイッチとしてスピードコントロールをすることにした。

ただ、この方法だと、何らかの方法を別途用意しないと、現在設定している速度がいくつなのかわからなくなる。

  • up/down 同時押しか何かで現在の設定をサイドトーンに出力
    • 簡単で良さそうだけど急いでるときはだるい
  • up/down 同時押しか何かで一定時間 2桁の7セグを駆動
    • IO使いまくる
  • I2C 液晶をつける
    • TINY だと面倒

と考えた結果、ボタン長押しでサイドトーン側に現在の設定を鳴らすことにした。

ボタンの同時押し

up/down ボタンだけでできるだけ多くの操作を割り当てたい。具体的には

  • 上記の通り、ボタン長押しで速度を発音
  • ボタン同時長押しでエレキーとしての機能を切るモード (調整のときとかに必要)

しかし、これは実際かなり大変で時間がかった。長押しはそんなに難しくないけど、同時押しはとにかくめんどうくさい。似たようなことをやってる人がいた ので、処理のしかたはほぼパクりつつ、PIND にしかスイッチがないので、PIND を一括で状態管理するような感じにした。

しかし、同時押しはどちらかが必ず先に押されるわけだし、通常の長押しと競合してしまったりする。頑張って判定する必要があった。

サイドトーンのオフ

リグに接続している間は当然サイドトーンを切りたい。しかし、スピードを発音したりするので、完全にスピーカーから何も鳴らさないというわけにはいかない。なので自由が効くソフトウェア側で処理するようにしたいと考えた。

しかしこれが曲者で、スイッチ付きジャックのスイッチ部分が信号ラインと一体でまずい。

説明するのが面倒だけど、リグ側からかかる電圧より、こちらの電圧のほうが低いので、ダイオードを1本入れて対処した。あやうい感じで、これでいいのかよくわからないけど、挙動的には望むものになった。

消費電力

何もしない状態だと 8MHz で動かして常時 2mA ぐらい流れる感じだったので、スリープモードとかを調べて実装してみた。

電源電圧 2.4V

  1. 何も対策しないと消費電力 約2mA、単3エネループ (1900mAh) 2本直列だと、950時間、約40日
  2. 毎ループアイドルにするようにする 0.82mA 同約96日
    1. キーの状態を見にいく割込みは生きているので、そのタイミングで毎回起きて、何もしてなかったらまた寝る
    2. 入力がない限り何もしないプログラムならお手軽に低消費電力にできる感じ
  3. 一定以上経つとパワーダウンする 54.9uA 同約1442日
    1. 10秒程度アイドル状態が続いたらパワーダウンモードに移行する
    2. キーの入力状態が変更されると、そこで割込みがかかって起きる
    3. 生きてるものが殆どなくなるので、さすがに制約が多く、ちょっと考えないとうまくいかない感じ

と、結構下げることができた。

動作周波数を1MHzまで下げることでさらに半分以下になったりするけど、while (--t) _delay_ms(1) のオーバーヘッドが無視できなくなるのか、符号のスピードがかなり遅くなってしまうので、やめてしまった。頑張ってオーバーヘッドをさっぴいて delay するようにするか、根本的に設計をみなおすかしないとだめそう。

最低動作電圧

現状

  • マイコン単体だと 1.5V 程度まで動く
  • 出力FETがオンする最低の電源電圧が 2.27V ぐらい。

電源はエネループを想定しているので、2.1V 程度まで動くと嬉しい。今だとちょっと高めで止まってしまう。FET のゲート抵抗をもっと低くしたらいいかもしれない。逆に、2.1V 程度になったら過放電を防ぐためにもちゃんと止まってほしい。むずかしい。

回路図

前述の通り、出力と、PB4(16pin) がダイオード経由で接続されてる。接続されているとき、リグからかかる電圧が PB4 にかからないようにという意図だけど、これでいいのかわからない。逆にこちらからリグ側へは制限されていなくてよくなさそう (プルアップされてるので電圧がかかってる)。接続されていない場合は接地される。もっといい方法がないか知りたいけど、手掛かりがない。

パドル側にはいずれもバリスタをつけてる。パドルは接点が露出したスイッチなので、静電気に気をつかわないとまずそうだなと思ってつけてるけど、これも自己判断なのでこれであっているかわからない。